
Load Balancers Need Cheap In-Band Feedback Control

Paper #74

ABSTRACT
Cloud load balancers (LBs) are critical components of in-
teractive services today, distributing client requests over a
server pool to improve performance and availability. There
has been significant interest in building scalable LBs. How-
ever, little attention has been paid to the request-routing poli-
cies that LBs use. Today’s policies are simple and static, like
spreading connections evenly across servers.

Over the next decade, application compute will become in-
creasingly granular, and request performance will be affected
by software and system variability at time scales of 100µs–
1ms. As a result, we believe that the status quo of static
request-routing policies will be simply unviable to support
high end-to-end application performance.

We advocate for a different approach: in-band feedback
control operating purely locally at LBs to adapt request-routing
to server performance. A key challenge is that high-speed
LBs cannot directly measure server performance, since they
only process requests and not responses. We present an ini-
tial design of an LB that adapts to a server latency inflation
of 1 ms and reduces tail latencies in milliseconds, while only
observing client-to-server traffic.

1 Introduction
Cloud load balancers (LBs) are crucial components of large
interactive distributed services. LBs enable application logic
to scale out to a pool of replicated servers, improving appli-
cation performance by avoiding hot spots. From the perspec-
tive of users, LBs hide churn in the set of servers in the pool,
providing higher availability for the service.

LBs are deployed widely to scale out user-facing appli-
cations running inside a compute cluster. LBs may run as
frontends, routing client requests arriving from the Internet
to the server pool [92, 60, 9, 87, 47, 49]. LBs may also
run as tier-to-tier balancers, scaling out a single application
tier (e.g., an in-memory database) of a complex application,
routing requests sent from other tiers [6, 11, 13, 55, 10, 24,
41, 54, 39, 28]. LBs may run at layer-4 (using connection
4-tuples) or layer-7 (e.g., using HTTP-based service identi-
fiers) to map requests to servers.

The networking community has witnessed significant work
in designing scalable LBs [92, 60, 65, 85, 87, 47, 49, 107].

However, the policies LBs use to route requests to servers are
simple and static: balance active connections among servers.

We believe that this status quo of static request-routing
will be unviable in the next decade. With the advent of mi-
croservices, serverless, and rack-scale computing [73, 34,
37, 22, 75, 84, 109, 81, 70, 79], application compute tasks
will become increasingly granular (§2.1). With finer gran-
ularity, server performance will be much more vulnerable
to regression from system and software variability at time
scales of 100µs–1 ms (§2.2). Variability will worsen tail la-
tencies. Alternative techniques to deal with variability, such
as overprovisioning, demand-driven scaling [5], and request
duplication [58] will simply not work at these time scales.
Applications will need LBs to adapt request-routing to highly-
variable server performance.

Adapting to server performance requires that LBs are aware
of it in the first place. Unfortunately, adding application-
level instrumentation and shipping performance data to cen-
tralized controllers or even the LBs themselves presents sig-
nificant challenges in data collection and freshness (§2.3).

Instead, we argue that LBs must implement distributed
feedback control to directly react to server and network per-
formance, through local measurement and control of their
own request-routing policy. Such an approach has the po-
tential to significantly improve application performance over
the next decade, even without co-opting servers, clients, ap-
plications, or the network. We take inspiration from the long
history of distributed feedback control in our community,
e.g., for TCP congestion [71, 78, 86] and distributed wide-
area traffic engineering [61, 77].

However, measuring end-to-end server performance directly
at LBs is complicated by the fact that high-speed LBs are de-
signed to minimize or avoid processing response traffic from
servers to clients (§2.4), to minimize CPU consumption and
reduce response latency [92].

This paper takes a first step towards in-band feedback con-
trol at LBs by presenting a technique to measure end-to-end
client-server response latency without observing response traf-
fic (§3). Our key insight is that it is possible to substitute
the measurement of the delay between request and response
by the delay between the request and a packet that a client
transmits due to the response—a packet we call a causally-
triggered transmission. We propose techniques to identify



causally-triggered transmissions, enabling highly accurate on-
going measurements of server response latencies. We also
design a simple control loop that adapts request-routing based
on server response latencies.

Experiments show that even this simple controller can re-
act to a server latency inflation of 1 ms and shift traffic in
milliseconds, reducing tail latencies (§4). We conclude the
paper with several open research questions on the design of
measurement and controllers in this context (§5).

2 The Case for In-Band Feedback Control
2.1 Granularity and Network Delays
Over the next decade, application compute will be increas-
ingly granular. Modern user-facing services break complex
application logic into loosely-coupled components, termed
microservices [73, 34], that collaboratively implement the
application by exchanging messages over the cluster’s inter-
connecting network. A single user-facing request may in-
volve calls to thousands of microservices [12, 3, 14, 20], with
the slowest microservice dominating response time [58]. To
provide end-to-end latencies in the milliseconds, each mi-
croservice will need to finish its compute in microseconds.
Systems support for “granular computing,” e.g., serverless [37,
22], rack-scale [75, 84, 109, 81, 70, 79], anticipates and
pushes this trend forward.

In the limit, the completion time of a compute task will be
comparable to the round-trip propagation delay to the com-
ponent that requested the task [89, 70]. It becomes important
that each request not only reach a “good” server, but also tra-
verse a lightly-loaded network path. A slightly slower server
that is reachable faster may be preferable to a fast server
with a congested network path. Today’s LBs completely ig-
nore the effects of network paths except at very coarse spatial
granularities [26, 27].

Further, the frequency of load-balancing decisions increases
with finer compute granularity. This makes it critical to get
server selection “right” for each request, to provide good
end-to-end application performance.

2.2 Performance Variability
Applications today run deep software stacks. Stemming from
the need to ease portability and scalability, containerization [53,
32, 40, 42] packages application components and their soft-
ware dependencies into self-contained execution environments.
However, supporting feature-rich connectivity between con-
tainers requires new software layers in the network stack, in-
cluding virtualized network interfaces (termed the container
network interface [16]) and the service mesh [48, 45, 7].
These additional layers support translation between container
and provider network addresses (providing containers the il-
lusion of their own IP address space [38]), access control
policies [8], and authentication between containers [21, 35].
Effectively, each network message between containers may
traverse the software network stack twice as many times as
packets between baremetal machines [110, 18].

The longer the lifetime of a message in software, the more
variable its processing latency, due to inefficiencies in schedul-
ing interrupts and threads (in user and kernel space) that
must process the message. On Linux today, recovering from
a single preemption may take hundreds of microseconds to
a few milliseconds [52, 75, 80, 56]). Increasing the time
spent by messages in the network stack also amplifies the
impact of background tasks such as compaction and garbage
collection [2, 88, 58] on processing latency. Recent works
that improve operating system scheduling to shrink tail la-
tencies [94, 75, 84, 62] use user-space networking stacks,
and hence coexist poorly with multi-tenancy [95]; they are
inapplicable to generic cloud deployments.

Unfortunately, the shrinking granularity of application com-
pute (§2.1) makes request-processing performance increas-
ingly vulnerable to low-level system variability over time.
Variability is challenging to get rid of completely [58]. The
consequence is that server request-processing performance
may vary fast, e.g., in hundreds of microseconds, or within a
few round-trip times in modern clusters. Typical approaches
to handle performance variability are not viable at this time
scale. Overprovisioning resources can get expensive [19].
Automatic scaling [53] to spin up new VMs and containers
may take tens of seconds to take effect [5, 29]. Compared to
sending the request to a fast server in the first place, timeout-
based request duplication [58] will effectively double the re-
sponse latency for a duplicated request when compute and
network delays are comparable (§2.1).

We believe that adaptive request-routing at LBs is architec-
turally the right approach to address variability of the kinds
discussed above. Instead of balancing active connections
evenly across servers [60, 9, 92] as today’s LBs do, the LBs
of the future should react to server performance directly,
since all servers are not equal at all times. Server perfor-
mance may change in a few round-trip times. Yet, LBs react-
ing to server performance can make many favorable request-
routing decisions even within just a few round-trip times,
corresponding to all the requests arriving during this period.
However, to adapt to changing server performance, LBs must
first observe it—a challenging task that we discuss below.

2.3 Avoiding App Modification
One may wonder if performance information from applica-
tions might be obtained at LBs through out-of-band chan-
nels. For example, applications themselves may publish oc-
cupancy of application-level queues or server CPU/memory
utilization to external monitoring systems, or even directly
to LBs [101, 64, 26, 25]. Alternatively, centralized load-
balancing controllers [44, 93] may consume performance in-
formation from servers and propagate control signals to up-
date request-routing policies at LBs.

Implementing changes to applications to support such use
cases is nontrivial. Anecdotally, getting wide deployment
of “housekeeping” functionality into applications requires
significant homogeneity in the deployed software environ-



ment [99]. Any degree of heterogeneity compounds the chal-
lenges of instrumenting source code [91, 76, 97]. The de-
composition of a complex application into microservices re-
flects the organizational structure of the teams managing the
different parts of the application’s logic. LB designs that re-
quire instrumentation of source code across teams will face
uphill battles for practical deployment.

If performance metrics could indeed be collected, the re-
activity of load balancing would still depend on how quickly
LBs can access fresh performance data or control signals.
Server performance data would need to be collected centrally
from across the server pool, and either the raw performance
data or updated request-routing policies (computed by a cen-
tralized controller) must be propagated to LBs. Such prop-
agation may occur through a storage or a pub/sub system.
Given the performance of cloud storage systems today, e.g.,
[23, 1], we estimate that propagating data from applications
via storage to a controller or even to each LB will take at least
10–100 milliseconds. Such data or signals will be too stale,
given the rapidity of server performance variation (§2.2).

2.4 Minimizing Traffic Footprint
To avoid the staleness of centralized data collection and con-
trollers, it is appealing to ask whether LBs can measure server
performance directly themselves. Unfortunately, this is not
easy to do, as we explain below.

Strictly speaking, LBs are just processing overheads for
applications: they are glue logic to move data to and from
applications running at servers. LBs must scale to handle
large bandwidth of traffic and avoid additional latency due
to their presence. Taming the CPU utilization of software
LBs is a significant operational concern [92, 65, 98, 57]. It is
especially crucial for frontend LBs since they handle every
packet sent to the service from the Internet, including vol-
umetric DDoS attack traffic such as SYN floods. However,
the concerns of reducing CPU cycles and keeping latencies
in check also apply to tier-to-tier LBs.

Specifically, many LBs implement direct server return (DSR),
an optimization that enables servers to send response traffic
directly to clients bypassing the LB [92, 30, 39, 28]. DSR
cuts the bandwidth and CPU requirements on LBs since the
LBs need not process bandwidth-intensive response traffic.
Moreover, DSR removes an additional hop on the server-to-
client path, which would otherwise add latency.

Unfortunately, optimizations to improve LB performance
by making them “low touch” on application traffic will also
hinder the visibility that LBs have over server performance.
Specifically, DSR makes it challenging for LBs to correlate
requests with responses (since the latter are unobservable).
Hence, it is difficult to measure a server’s response latencies
or request-processing rates directly at the LB. The assump-
tion of observing both directions of traffic is ubiquitous in
measurement works that aim to passively estimate round-trip
times of connections from an intermediate vantage point [96,
82, 108, 90, 50, 72, 74, 104, 66, 83, 105].

To our knowledge, all the load-balancing systems that take
server performance into account require TCP connection ter-
mination, enabling visibility into both request and response [6,
36, 24, 41, 13], or require application modification [51, 101].
TCP connection termination is CPU-expensive and is not al-
ways possible (e.g., frontend layer-4 LBs). Application mod-
ification creates other challenges (§2.3).

2.5 Goals for Next-Generation LBs
We believe that providing high performance to support emerg-
ing applications requires designing distributed feedback con-
trol at LBs, with local measurement and adaptation of request-
routing policies. Ideal LBs of the future must:
• incorporate network and server processing delays into

request-routing decisions (§2.1);
• react to server performance variation quickly (100µs–

1ms) and on an ongoing basis (§2.2);
• require only locally observable information, avoiding

application modification and storage (§2.3);
• operate under direct server return, observing only one

direction of traffic, going from client to server (§2.4);
• impose minimal CPU and memory overhead due to

feedback control on the critical request path; and
• meet standard LB requirements such as connection-

to-server affinity and minimizing connection-breaking
due to churn in the set of LBs and servers [60, 87, 49].

3 Design
In this section, we present the design of an LB that mea-
sures and optimizes end-to-end response latencies of con-
nections balanced by it. The response latency of a server is
the time interval between a request and its response as mea-
sured at the requesting client. However, for LBs implement-
ing direct server return (DSR, §2.4), LBs cannot observe re-
sponses returning to clients. In the rest of this section, we
present a novel measurement technique to estimate response
latency under DSR, and a simple control algorithm that re-
acts to measured response latency. Our measurement tech-
nique may also apply more generally to passive round-trip
time measurements with asymmetric routing [46].

Measuring proxy intervals using causally-triggered trans-
missions. Even if an LB does not observe a response packet,
our key insight is that the LB could observe a packet causally
triggered by the response. Hence, this triggered packet may
be used to measure response latency, assuming that the latter
lands at the LB “soon” after the response arrived at the client.
The response latency is estimated as the delay between the
request and the causally-triggered packet, both observed at
the LB. The idea is illustrated in Fig.1(a). The proxy mea-
surement is purely local to the LB, and can occur without
client, server, application, or network coordination.

The proxy measurement will indeed be inaccurate relative
to the response latency. Fig.1(b) illustrates the errors that are
possible. Tclient is the true response latency, but the proxy
measurement TLB differs from it in the following way: TLB−



Tclient = Ttrigger+O3−O1. Here, O1 is the one-way delay for
the first request from the client to the LB, O2 is the delay for
the request from the LB to reach the server and its response
to reach the client, O3 is the one-way delay for the causally-
triggered packet from the client to the LB, and Ttrigger is the
time it takes to trigger the packet after the response arrives.
In our experience, O1 and O3 are statistically comparable,
and Ttrigger is the bulk of the error in TLB.

A simple instantiation of the proxy measurement idea is
the estimation of the TCP round-trip time at the beginning of
the connection by measuring the time interval between the
SYN and the ACK packet of the TCP 3-way handshake [102,
46]. However, triggered packets are much more common and
general beyond the TCP handshake. Other examples include:
all TCP acknowledgments driven by packet receptions, in-
cluding all ACK-clocked data transmissions; response-triggered
dispatch of new requests due to flow control and concurrency
limits in HTTP/2, QUIC, and RPC libraries [4, 15, 17]; and
request-reply transactions serialized to respect data depen-
dencies and ordering requirements in microservices [63, 43].
In general, any client-server pair that is prevented from trans-
mitting data due to flow control (at the application or trans-
port layer) will result in causally-triggered transmissions.

Unfortunately, identifying packets that are triggered due to
responses of earlier requests is challenging. Consider Fig.1(c).
There are several packets that an LB could consider as can-
didates for measurement. Without invoking detailed appli-
cation or protocol knowledge (§2.3), it is unclear which of
the packets is the one causally triggered by a response to a
previous request.

Using inter-packet gaps to identify causally-triggered trans-
missions. Our observation is that in flow-controlled flows,
some of the time gaps between successive packets are much
longer than others. This is because a client will typically
max out its quota of outstanding requests (determined by
flow control), and wait for a reply before it is allowed to send
subsequent packets. The wait produces the longer pause be-
tween transmissions: longer, typically, than the pauses be-
tween packet transmissions allowable by flow control, e.g.,
the window in case of TCP. A response breaks the pause in
transmissions by re-opening the flow control quota.

Identifying triggered transmissions through pauses is rem-
iniscent of flowlet switching, i.e., load-balancing bursts of
packets in a TCP connection that are close together in time,
an idea that has been harnessed for in-network load balanc-
ing [100, 103]. Flowlet switching uses a parameter, the flowlet
timeout, which corresponds to the minimum idle time be-
tween flowlets. If the time gap between two successive pack-
ets in a connection exceeds this timeout, the second packet
is said to belong to a new flowlet.

To identify triggered transmissions, one could attempt some-
thing similar, separating packets into batches based on a thresh-
old on the inter-packet gap. The time gap between the first
packets of successive batches provides a running estimate
of the response latency of the connection. The algorithm

Algorithm 1: FIXEDTIMEOUT: Track causally-
triggered transmissions through a fixed timeout to
identify new batches of packets, executed at LB upon
receiving each packet of flow f .
Input: Fixed inter-batch timeout, T
Input: Timestamp of the current packet’s arrival, now
Input: The last time a new batch arrived for flow f ,

f .time_last_batch
Input: The last time a packet arrived for flow f ,

f .time_last_pkt
Output: An estimate of flow f ’s round trip time, R̂, if

a new sample is produced, else unde f
1 R̂ = unde f
2 if now− f .time_last_pkt > T then

. New batch: record response latency.
3 R̂ = now− f .time_last_batch
4 f .time_last_batch = now
5 end
6 f .time_last_pkt = now
7 return R̂

FIXEDTIMEOUT shown in Algorithm 1 implements this ap-
proach; it must be executed upon the arrival of each packet
belonging to flow f at an LB. The algorithm separates pack-
ets into batches and estimates response latency for flow f .

Unfortunately, setting the timeout parameter is nontrivial.
Packets within a single batch of transmissions need not be
transmitted back-to-back. Too low a timeout will incorrectly
separate packets with small gaps into separate batches, and
report artificially low response latencies. If the timeout is set
too high, the algorithm will miss batches of packets, span-
ning multiple (true) packet batches, and inferring an erro-
neously high response latency.

The ideal timeout value that separates packets into batches
depends on several factors that span the characteristics of
both the workload and the underlying network. These fac-
tors include the propagation delay between the client and the
server, the pattern of packet transmissions at the client (i.e.,
how flow control is implemented by the server and client),
and the utilization contributed by the flow to the bottleneck
link along the client-to-LB network path (higher the utiliza-
tion, smaller the inter-packet time gap that separates batches).
These factors change with the deployment and over time, and
as such, it is challenging to determine a standard value appli-
cable under all scenarios.

Using ensemble estimation and sample cliffs to demar-
cate triggered transmissions. We show that it is possible
to take advantage of the specific kinds of errors contributed
by incorrect timeouts over time, to triangulate to a timeout
that works. Specifically, over a fixed epoch of time E (we
use E = 64 ms), the number of samples obtained by FIXED-
TIMEOUT (i.e., samples where R̂ is not unde f ) for any time-
out T , provides crucial information.



Client LB Server

request

triggered packet

response 
not visible
at LB

Client LB

O1

O2
(LBàSàC)

Ttrigger

O3

response
(invisible at LB)T c

lie
nt

T L
B triggered pkt

request

Client LB Server

request
triggers?

(a) Proxy measurement. (b) Errors in measurement. (c) Identifying triggered packets is hard.

Figure 1: Causally-triggered transmissions (§3): (a) It is possible to estimate the request ⇔ response latency at the
client through a measurement of the request⇔ triggered-packet latency at the LB. Measuring the latter only requires
observing traffic going from client to server. (b) However, the proxy measurement TLB may have errors relative to the
desired measurement Tclient (c) Identifying the packet triggered by the response of a given request is challenging.

Algorithm 2: ENSEMBLETIMEOUT: Track causally-
triggered transmissions through an ensemble of time-
outs and detection of a sample cliff. The algorithm is
executed at the LB upon receiving each packet.
Input: k exponentially increasing timeouts

T1,T2, · · · ,Tk
Input: Timestamp of the current packet’s arrival, now
Input: The last time a new batch arrived for flow f ,

f .time_last_batchi, one value maintained for
each timeout Ti

Input: The last time a packet arrived for flow f ,
f .time_last_pkt

Input: Number of samples so far corresponding to Ti
this epoch, Ni

Input: Epoch length, E
Input: Timeout chosen for current epoch, Te
Output: An estimate of flow f ’s round trip time, R̂
Output: A new timeout for the next epoch, Te

1 for i← 1 to k do
. For each timeout value

2 R̂i = FIXEDTIMEOUT () with timeout Ti

3 if R̂i not unde f then
4 Increment sample count Ni for timeout Ti
5 end
6 end
7 if current packet is the first of a new epoch then

. Detect sample cliff
8 Pick m = argmaxi(Ni/Ni+1)

. Reset all sample counters for next epoch
9 Set Ni← 0 for all i

. For next epoch, use timeout Tm
10 Te← Tm

11 end
12 return R̂e,Te

Suppose the client transmits W packets on average within
each round-trip time in the epoch. Suppose the true response
latency is fixed at R over the duration of the epoch. If the
timeout T were in fact close to the (unknown) ideal time-
out Topt , the number of samples obtained by FIXEDTIME-
OUT will be equal to the number of true round-trip times
within the epoch, i.e., E/R. However, if T < Topt , FIXED-
TIMEOUT will surely identify each round-trip time as a new
batch, but it may also add additional erroneous samples of
R̂ (incorrectly assuming that some packets are from differ-
ent batches). Specifically, FIXEDTIMEOUT may produce 2
to W times more samples of R̂ than E/R, since one “true”
batch of packets may be identified as anything between 2 to
W distinct batches. On the other extreme, if T > Topt , each
sample R̂ will span several round-trip times. The algorithm
will produce far fewer than E/R samples.

Our key insight is to look for a drastic reduction in the
number of samples collected with increasing timeouts Ti over
an epoch, to help set the correct timeout for the next epoch.
We call this sample cliff detection. Over each epoch E, algo-
rithm ENSEMBLETIMEOUT (Algorithm 2) implements k in-
stances of FIXEDTIMEOUT with timeout values T1,T2, · · · ,Tk
(lines 1–6). The timeouts Ti could be exponentially spaced
to span a sufficiently large range of Topt values. We use
T1 = 64µs,T2 = 128µs, · · · ,T7 = 4ms. At the end of each
epoch, ENSEMBLETIMEOUT determines the largest reduc-
tion in the number of samples between adjacent timeouts
(sorted from smallest to largest timeouts, see line 8). We
pick a timeout corresponding to a sample cliff; suppose this
timeout is Tm. ENSEMBLETIMEOUT returns response laten-
cies estimated using Tm over the next epoch.

Simple load balancing strategy. Inspired by gradient-based
methods used in traffic engineering [61, 77], we use a simple
load-balancing strategy that redistributes a fixed fraction δ

of total traffic from the server with the highest latency (as
measured by ENSEMBLETIMEOUT) equally over all other



servers. We use δ = 10%. The traffic shift may occur every
time the LB receives a new sample of response latency, e.g.,
every round-trip time of each connection. We leave more
sophisticated strategies to future work.

4 Preliminary Evaluation
This section provides a preliminary demonstration of how
response latencies measured locally at LBs can aid in de-
signing reactive load-balancing strategies. We implemented
the measurement and control strategies described in §3 in
the context of Cilium’s XDP load balancer [55], which im-
plements the Maglev hash function [60] to map connections
to servers. In our setup, the LB balances requests arriving
towards two memcached Kubernetes pods, each running on
its own baremetal server on CloudLab [59].

The requests are generated using the memtier benchmark
tool [33]. The client establishes multiple TCP connections,
sends several requests over each connection, closes, and re-
opens the connections, and repeats over the duration of the
experiment. Sending multiple requests over each connection
allows the LB to observe response latencies per server. Re-
establishing connections from time to time allows the LB to
make fresh request-routing decisions using the learned server
latencies. We used a 50-50 mix of GET and SET requests.

The LB is initialized with the default Maglev hash func-
tion, i.e., 50% of the slots in the LB’s hash table point to
each of the pods. However, in the middle of the experiment,
we injected an artificial delay of 1 ms along the path from
the LB to one of the servers. Fig.2 compares the 95th per-
centile GET response latency of the latency-aware design
(§3) and the regular Maglev LB. The latency-aware design
can react much faster: our instrumentation of the LB’s hash
table shows that the updates incorporate the latency inflation
in milliseconds (the client only provides performance statis-
tics every few seconds).

5 Open Research Questions
We outline open research questions pertaining to better in-
band measurement and control at LBs.

(1) Handling scenarios without causal triggering. Responses
from servers trigger subsequent transmissions if the client-
server flow is bottlenecked by flow control (at the application
or transport layers). However, data transfers may have other
bottlenecks. Examples include application-limited flows and
algorithms inducing delayed packet transmission in the net-
work stack, e.g., TCP delayed ACKs.

(2) Addressing smooth inter-packet gaps. Even if causally-
triggered transmissions are occurring, waiting for “long” pauses
between packets may be insufficient to detect such transmis-
sions. Examples of such scenarios include (i) paced packet
transmissions, where each inter-packet gap looks similar to
the next one (by design); and (ii) flows transmitting at the
full rate of the bottleneck link between client and LB, so the
inter-packet gaps all equal the link’s transmission delay.

0.0 24
.6

49
.3

73
.9

98
.5

12
3.2

14
7.8

17
2.5

19
7.1

22
1.7

Time (s)

0.000
0.444
0.888
1.332
1.776
2.220
2.664
3.108
3.552
3.996

C
lie

nt
 G

E
T 

La
te

nc
y 

(m
s)

Maglev
Latency-aware

Figure 2: Evolution of the 95th percentile latency for
GET requests in a load-balanced two-node memcached
cluster. An artificial delay of 1 ms is injected at one of
the servers, resulting in high tail latencies for a regular
Maglev LB. However, a latency-aware approach (§3) can
shift traffic to reduce tail latencies in milliseconds.

(3) Dealing with non-equidistant clients. The LB’s deci-
sions require aggregating flow-level response latencies into
server-level assessments of performance. Such aggregation
can be challenging when clients are distributed geographi-
cally, e.g., for frontend LBs. Here, the flow’s response la-
tency depends on the network paths from the client to the
LB and the server to the client, which are outside the LB’s
control and impervious to its decisions. It is necessary to
tease out just the components of the flow latency that can, in
fact, be controlled through load balancing.

(4) Disambiguating poor performance due to load from
other causes. Server load is only loosely correlated with
high processing latency. Even at high load, an application’s
queue may be nearly empty [64], leading to low latency. Fur-
ther, poor performance may manifest even at low loads due
to “fail-slow” hardware faults occurring at scale [67, 106, 69,
68, 31]. Redirecting requests away from a a server present-
ing high response latencies may actually worsen tail laten-
cies if other servers are overloaded in the process. LBs must
learn to categorize the cause of poor server performance.

(5) Designing more sophisticated control loops. There are
important open questions in designing control loops that op-
timize tail latency, while converging fast, yet avoiding thundering-
herd problems when multiple LBs are reacting.

6 Conclusion
Load balancers (LBs) are critical components of interactive
applications. In this paper, we have argued for in-band feed-
back control at LBs, and shown techniques to measure and
react to server response latencies. We call on the community
to research designs for novel performance-aware LBs.

7 References



[1] AWS S3 vs Google Cloud vs Azure: Cloud Storage Performance.
[Online, Retrieved Jun 12, 2022.]
http://blog.zachbjornson.com/2015/12/29/
cloud-storage-performance.html, 2011.

[2] Send Hints to Dynamic Snitch when Compaction or repair is going
on for a node. [Online, Retrieved Jun 12, 2022.] https://
issues.apache.org/jira/browse/CASSANDRA-3722,
2012.

[3] Adopting Microservices at Netflix: Lessons for Architectural
Design. [Online, Retrieved Jun 12, 2022.]
https://www.nginx.com/blog/
microservices-at-netflix-architectural-best-practices/,
2015.

[4] RFC 7540 HTTP/2: Streams and Multiplexing. [Online, Retrieved
Jun 12, 2022.] https://www.rfc-editor.org/rfc/
rfc7540.html#section-5, 2015.

[5] Autoscaling in Kubernetes. [Online, Retrieved Jun 12, 2022.]
https://kubernetes.io/blog/2016/07/
autoscaling-in-kubernetes/, 2016.

[6] gRPC load balancing. [Online, Retrieved Jun 12, 2022.]
https://grpc.io/blog/grpc-load-balancing/,
2017.

[7] What’s a service mesh and why do I need one? [Online, Retrieved
Jun 12, 2022.] https://linkerd.io/2017/04/25/
whats-a-service-mesh-and-why-do-i-need-one/,
2017.

[8] Introduction to HAProxy ACLs. [Online, Retrieved Jun 12, 2022.]
https://www.haproxy.com/blog/
introduction-to-haproxy-acls/, 2018.

[9] Open-sourcing Katran, a scalable load balancer. [Online, Retrieved
Jun 12, 2022.] https:
//engineering.fb.com/2018/05/22/open-source/
open-sourcing-katran-a-scalable-network-load-balancer/,
2018.

[10] Cilium: Socket-based load balancing. [Online, Retrieved Jun 12,
2022.] https://cilium.io/blog/2019/08/20/
cilium-16#hostservices, 2019.

[11] Deploying load balancing. [Online, Retrieved Jun 12, 2022.]
https://docs.microsoft.com/en-us/windows/
win32/rpc/deploying-load-balancing, 2019.

[12] Managing Uber’s data workflows at scale. [Online, Retrieved Jun
12, 2022.] https://eng.uber.com/
managing-data-workflows-at-scale/, 2019.

[13] Microsoft RPC load balancing. [Online, Retrieved Jun 12, 2022.]
https://docs.microsoft.com/en-us/windows/
win32/rpc/rpc-load-balancing, 2019.

[14] Rebuilding Twitter’s public API. [Online, Retrieved Jun 12, 2022.]
https://blog.twitter.com/engineering/en_us/
topics/infrastructure/2020/rebuild_twitter_
public_api_2020, 2020.

[15] RFC 9000: QUIC: flow control. [Online, Retrieved Jun 12, 2022.]
https://www.rfc-editor.org/rfc/rfc9000.html#
flow-control, 2020.

[16] Comparing Kubernetes Container Network Interface (CNI)
providers. [Online, Re-
trieved Jun 12, 2022.] https://kubevious.io/blog/post/
comparing-kubernetes-container-network-interface-cni-providers,
2021.

[17] gRPC performance best practices. [Online, Retrieved Jun 12, 2022.]
https://grpc.io/docs/guides/performance/, 2021.

[18] How eBPF will solve Service Mesh - Goodbye Sidecars. [Online,
Retrieved Jun 12, 2022.] https://isovalent.com/blog/
post/2021-12-08-ebpf-servicemesh/, 2021.

[19] The Cost of Cloud, a Trillion Dollar Paradox. [Online, Retrieved
Jun 12, 2022.] https://a16z.com/2021/05/27/
cost-of-cloud-paradox-market-cap-cloud-lifecycle-scale-growth-repatriation-optimization/,
2021.

[20] The Human Side of Airbnb’s Microservice Architecture. [Online,
Retrieved Jun 12, 2022.] https://www.infoq.com/
presentations/airbnb-culture-soa/, 2021.

[21] Automatic mTLS. [Online, Retrieved Jun 12, 2022.] https:
//linkerd.io/2.11/features/automatic-mtls/,
2022.

[22] AWS Lambda. [Online, Retrieved Jun 12, 2022.]
https://aws.amazon.com/lambda/, 2022.

[23] Configure disks to meet performance requirements. [Online,
Retrieved Jun 12, 2022.] https://cloud.google.com/
compute/docs/disks/performance, 2022.

[24] Envoy: supported load balancers. [Online, Retrieved Jun 12, 2022.]
https://www.envoyproxy.io/docs/envoy/latest/
intro/arch_overview/upstream/load_balancing/
load_balancers, 2022.

[25] Google cloud: Load balancing mode. [Online, Retrieved Jun 12,
2022.] https://cloud.google.com/load-balancing/
docs/backend-service#balancing-mode, 2022.

[26] Google cloud: Traffic policies. [Online, Retrieved Jun 12, 2022.]
https://cloud.google.com/load-balancing/docs/
l7-internal/traffic-management#traffic_
policies, 2022.

[27] Istio: Locality load balancing. [Online, Retrieved Jun 12, 2022.]
https://istio.io/latest/docs/tasks/
traffic-management/locality-load-balancing/,
2022.

[28] Kubernetes Networking: Load Balancer and Network Load
Balancer. [Online, Retrieved Jun 12, 2022.]
https://ibm.github.io/kubernetes-networking/
services/loadbalancer/, 2022.

[29] Kubernetes scheduler. [Online, Retrieved Jun 12, 2022.]
https://kubernetes.io/docs/concepts/
scheduling-eviction/kube-scheduler/, 2022.

[30] Kubernetes without Kube-Proxy. [Online, Retrieved Jun 12, 2022.]
https://docs.cilium.io/en/stable/
gettingstarted/kubeproxy-free/, 2022.

[31] Latency Sensei Gallery. [Online, Retrieved Jun 12, 2022.]
https://sensei.clockwork.io/user/gallery/, 2022.

[32] Linux container and virtualization tools. [Online, Retrieved Jun 12,
2022.] https://linuxcontainers.org/, 2022.

[33] memtier_benchmark. [Online, Retrieved Jun 12, 2022.] https:
//github.com/RedisLabs/memtier_benchmark/, 2022.

[34] Microservices and Microservices architecture. [Online, Retrieved
Jun 12, 2022.] https://www.intel.com/content/www/
us/en/cloud-computing/microservices.html, 2022.

[35] Next-generation mutual authentication with Cilium service mesh.
[Online, Retrieved Jun 12, 2022.] https://isovalent.com/
blog/post/2022-05-03-servicemesh-security/,
2022.

[36] NGINX Plus Feature: Load Balancing. [Online, Retrieved Jun 12,
2022.] https:
//www.nginx.com/products/nginx/load-balancing,
2022.

[37] Serverless on AWS. [Online, Retrieved Jun 12, 2022.]
https://aws.amazon.com/serverless/, 2022.

[38] The Kubernetes network model. [Online, Retrieved Jun 12, 2022.]
https://kubernetes.io/docs/concepts/
services-networking/, 2022.

[39] The Kubernetes Networking Guide: NodePort. [Online, Retrieved
Jun 12, 2022.]
https://www.tkng.io/services/nodeport/, 2022.

[40] Use containers to Build, Share and Run your applications. [Online,
Retrieved Jun 12, 2022.] https:
//www.docker.com/resources/what-container,
2022.

[41] Using nginx as HTTP load balancer. [Online, Retrieved Jun 12,
2022.] https:
//nginx.org/en/docs/http/load_balancing.html,
2022.

[42] What is a container? [Online, Retrieved Jun 12, 2022.]
https://azure.microsoft.com/en-us/overview/
what-is-a-container/#overview, 2022.

[43] ZeroMQ: Advanced request-reply patterns. [Online, Retrieved Jun
12, 2022.]

http://blog.zachbjornson.com/2015/12/29/cloud-storage-performance.html
http://blog.zachbjornson.com/2015/12/29/cloud-storage-performance.html
https://issues.apache.org/jira/browse/CASSANDRA-3722
https://issues.apache.org/jira/browse/CASSANDRA-3722
https://www.nginx.com/blog/microservices-at-netflix-architectural-best-practices/
https://www.nginx.com/blog/microservices-at-netflix-architectural-best-practices/
https://www.rfc-editor.org/rfc/rfc7540.html#section-5
https://www.rfc-editor.org/rfc/rfc7540.html#section-5
https://kubernetes.io/blog/2016/07/autoscaling-in-kubernetes/
https://kubernetes.io/blog/2016/07/autoscaling-in-kubernetes/
https://grpc.io/blog/grpc-load-balancing/
https://linkerd.io/2017/04/25/whats-a-service-mesh-and-why-do-i-need-one/
https://linkerd.io/2017/04/25/whats-a-service-mesh-and-why-do-i-need-one/
https://www.haproxy.com/blog/introduction-to-haproxy-acls/
https://www.haproxy.com/blog/introduction-to-haproxy-acls/
https://engineering.fb.com/2018/05/22/open-source/open-sourcing-katran-a-scalable-network-load-balancer/
https://engineering.fb.com/2018/05/22/open-source/open-sourcing-katran-a-scalable-network-load-balancer/
https://engineering.fb.com/2018/05/22/open-source/open-sourcing-katran-a-scalable-network-load-balancer/
https://cilium.io/blog/2019/08/20/cilium-16#hostservices
https://cilium.io/blog/2019/08/20/cilium-16#hostservices
https://docs.microsoft.com/en-us/windows/win32/rpc/deploying-load-balancing
https://docs.microsoft.com/en-us/windows/win32/rpc/deploying-load-balancing
https://eng.uber.com/managing-data-workflows-at-scale/
https://eng.uber.com/managing-data-workflows-at-scale/
https://docs.microsoft.com/en-us/windows/win32/rpc/rpc-load-balancing
https://docs.microsoft.com/en-us/windows/win32/rpc/rpc-load-balancing
https://blog.twitter.com/engineering/en_us/topics/infrastructure/2020/rebuild_twitter_public_api_2020
https://blog.twitter.com/engineering/en_us/topics/infrastructure/2020/rebuild_twitter_public_api_2020
https://blog.twitter.com/engineering/en_us/topics/infrastructure/2020/rebuild_twitter_public_api_2020
https://www.rfc-editor.org/rfc/rfc9000.html#flow-control
https://www.rfc-editor.org/rfc/rfc9000.html#flow-control
https://kubevious.io/blog/post/comparing-kubernetes-container-network-interface-cni-providers
https://kubevious.io/blog/post/comparing-kubernetes-container-network-interface-cni-providers
https://grpc.io/docs/guides/performance/
https://isovalent.com/blog/post/2021-12-08-ebpf-servicemesh/
https://isovalent.com/blog/post/2021-12-08-ebpf-servicemesh/
https://a16z.com/2021/05/27/cost-of-cloud-paradox-market-cap-cloud-lifecycle-scale-growth-repatriation-optimization/
https://a16z.com/2021/05/27/cost-of-cloud-paradox-market-cap-cloud-lifecycle-scale-growth-repatriation-optimization/
https://www.infoq.com/presentations/airbnb-culture-soa/
https://www.infoq.com/presentations/airbnb-culture-soa/
https://linkerd.io/2.11/features/automatic-mtls/
https://linkerd.io/2.11/features/automatic-mtls/
https://aws.amazon.com/lambda/
https://cloud.google.com/compute/docs/disks/performance
https://cloud.google.com/compute/docs/disks/performance
https://www.envoyproxy.io/docs/envoy/latest/intro/arch_overview/upstream/load_balancing/load_balancers
https://www.envoyproxy.io/docs/envoy/latest/intro/arch_overview/upstream/load_balancing/load_balancers
https://www.envoyproxy.io/docs/envoy/latest/intro/arch_overview/upstream/load_balancing/load_balancers
https://cloud.google.com/load-balancing/docs/backend-service#balancing-mode
https://cloud.google.com/load-balancing/docs/backend-service#balancing-mode
https://cloud.google.com/load-balancing/docs/l7-internal/traffic-management#traffic_policies
https://cloud.google.com/load-balancing/docs/l7-internal/traffic-management#traffic_policies
https://cloud.google.com/load-balancing/docs/l7-internal/traffic-management#traffic_policies
https://istio.io/latest/docs/tasks/traffic-management/locality-load-balancing/
https://istio.io/latest/docs/tasks/traffic-management/locality-load-balancing/
https://ibm.github.io/kubernetes-networking/services/loadbalancer/
https://ibm.github.io/kubernetes-networking/services/loadbalancer/
https://kubernetes.io/docs/concepts/scheduling-eviction/kube-scheduler/
https://kubernetes.io/docs/concepts/scheduling-eviction/kube-scheduler/
https://docs.cilium.io/en/stable/gettingstarted/kubeproxy-free/
https://docs.cilium.io/en/stable/gettingstarted/kubeproxy-free/
https://sensei.clockwork.io/user/gallery/
https://linuxcontainers.org/
https://github.com/RedisLabs/memtier_benchmark/
https://github.com/RedisLabs/memtier_benchmark/
https://www.intel.com/content/www/us/en/cloud-computing/microservices.html
https://www.intel.com/content/www/us/en/cloud-computing/microservices.html
https://isovalent.com/blog/post/2022-05-03-servicemesh-security/
https://isovalent.com/blog/post/2022-05-03-servicemesh-security/
https://www.nginx.com/products/nginx/load-balancing
https://www.nginx.com/products/nginx/load-balancing
https://aws.amazon.com/serverless/
https://kubernetes.io/docs/concepts/services-networking/
https://kubernetes.io/docs/concepts/services-networking/
https://www.tkng.io/services/nodeport/
https://www.docker.com/resources/what-container
https://www.docker.com/resources/what-container
https://nginx.org/en/docs/http/load_balancing.html
https://nginx.org/en/docs/http/load_balancing.html
https://azure.microsoft.com/en-us/overview/what-is-a-container/#overview
https://azure.microsoft.com/en-us/overview/what-is-a-container/#overview


https://zguide.zeromq.org/docs/chapter3/, 2022.
[44] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, A. Vahdat,

et al. Hedera: dynamic flow scheduling for data center networks. In
Nsdi, volume 10, pages 89–92. San Jose, USA, 2010.

[45] G. Antichi and G. Rétvári. Full-stack SDN: The next big challenge?
In Proceedings of the Symposium on SDN Research, pages 48–54,
2020.

[46] M. Apostolaki, A. Singla, and L. Vanbever. Performance-Driven
Internet Path Selection, page 41–53. Association for Computing
Machinery, New York, NY, USA, 2021.

[47] J. T. Araújo, L. Saino, L. Buytenhek, and R. Landa. Balancing on
the edge: Transport affinity without network state. In Usenix
Symposium on Networked Systems Design and Implementation
(NSDI), 2018.

[48] S. Ashok, P. B. Godfrey, and R. Mittal. Leveraging service meshes
as a new network layer. In Proceedings of the Twentieth ACM
Workshop on Hot Topics in Networks, pages 229–236, 2021.

[49] T. Barbette, C. Tang, H. Yao, D. Kostić, G. Q. Maguire Jr,
P. Papadimitratos, and M. Chiesa. A high-speed load-balancer
design with guaranteed per-connection-consistency. In Usenix
Symposium on Networked Systems Design and Implementation
(NSDI), 2020.

[50] P. Barford and M. Crovella. Critical path analysis of tcp
transactions. In ACM SIGCOMM, 2000.

[51] Brandon Williams. Dynamic snitching in Cassandra: past, present,
and future. [Online, Retrieved Jun 12, 2022.]
https://www.datastax.com/blog/
dynamic-snitching-cassandra-past-present-and-future,
2012.

[52] D. Bristot de Oliveira, D. Casini, R. Oliveira, and T. Cucinotta.
Demystifying the real-time linux scheduling latency. In ECRTS, 07
2020.

[53] B. Burns, B. Grant, D. Oppenheimer, E. Brewer, and J. Wilkes.
Borg, Omega, and Kubernetes: Lessons learned from three
container-management systems over a decade. Queue, 14(1):70–93,
2016.

[54] Carson Anderson. Kubernetes deconstructed. [Online, Retrieved Jun
12, 2022.] https://vimeo.com/245778144/4d1d597c5e,
2017.

[55] Daniel Borkmann. Kube-proxy replacement at the XDP layer.
[Online, Retrieved Jun 12, 2022.] https://cilium.io/blog/
2020/06/22/cilium-18#kubeproxy-removal, 2020.

[56] Daniel Borkmann. Cilium & BPF: a fundamentally better dataplane.
[Online, Retrieved Jun 12, 2022.]
https://guild42.ch/wp-content/uploads/2021/
12/Guild42.ch-BPF-Borkmann.pdf, 2022.

[57] Daniel Borkmann and Martynas Pumputis. K8s Service Load
Balancing with BPF & XDP. In Linux Plumbers Conference, 2020.

[58] J. Dean and L. A. Barroso. The tail at scale. Communications of the
ACM, 56(2):74–80, 2013.

[59] D. Duplyakin, R. Ricci, A. Maricq, G. Wong, J. Duerig, E. Eide,
L. Stoller, M. Hibler, D. Johnson, K. Webb, A. Akella, K. Wang,
G. Ricart, L. Landweber, C. Elliott, M. Zink, E. hh0Cecchet, S. Kar,
and P. Mishra. The design and operation of CloudLab. In
Proceedings of the USENIX Annual Technical Conference (ATC),
2019.

[60] D. E. Eisenbud, C. Yi, C. Contavalli, C. Smith, R. Kononov,
E. Mann-Hielscher, A. Cilingiroglu, B. Cheyney, W. Shang, and
J. D. Hosein. Maglev: A fast and reliable software network load
balancer. In USENIX Symposium on Networked Systems Design and
Implementation (NSDI 16), 2016.

[61] A. Elwalid, C. Jin, S. Low, and I. Widjaja. Mate: Mpls adaptive
traffic engineering. In Proceedings IEEE INFOCOM 2001.
Conference on Computer Communications. Twentieth Annual Joint
Conference of the IEEE Computer and Communications Society
(Cat. No. 01CH37213), volume 3, pages 1300–1309. IEEE, 2001.

[62] J. Fried, Z. Ruan, A. Ousterhout, and A. Belay. Caladan: Mitigating
interference at microsecond timescales. In Usenix Symposium on
Operating Systems Design and Implementation (OSDI), 2020.

[63] Y. Gan, Y. Zhang, D. Cheng, A. Shetty, P. Rathi, N. Katarki,
A. Bruno, J. Hu, B. Ritchken, B. Jackson, et al. An open-source

benchmark suite for microservices and their hardware-software
implications for cloud & edge systems. In Proceedings of the
Twenty-Fourth International Conference on Architectural Support
for Programming Languages and Operating Systems, pages 3–18,
2019.

[64] Y. Gan, Y. Zhang, K. Hu, D. Cheng, Y. He, M. Pancholi, and
C. Delimitrou. Seer: Leveraging big data to navigate the complexity
of performance debugging in cloud microservices. In Proceedings of
the twenty-fourth international conference on architectural support
for programming languages and operating systems, pages 19–33,
2019.

[65] R. Gandhi, H. H. Liu, Y. C. Hu, G. Lu, J. Padhye, L. Yuan, and
M. Zhang. Duet: Cloud scale load balancing with hardware and
software. In Proceedings of the 2014 ACM Conference on
SIGCOMM, SIGCOMM ’14, page 27–38, New York, NY, USA,
2014. Association for Computing Machinery.

[66] M. Ghasemi, T. Benson, and J. Rexford. Dapper: Data plane
performance diagnosis of tcp. In Proceedings of the Symposium on
SDN Research (SOSR), 2017.

[67] H. S. Gunawi, R. O. Suminto, R. Sears, C. Golliher,
S. Sundararaman, X. Lin, T. Emami, W. Sheng, N. Bidokhti,
C. McCaffrey, D. Srinivasan, B. Panda, A. Baptist, G. Grider, P. M.
Fields, K. Harms, R. B. Ross, A. Jacobson, R. Ricci, K. Webb,
P. Alvaro, H. B. Runesha, M. Hao, and H. Li. Fail-slow at scale:
Evidence of hardware performance faults in large production
systems. ACM Trans. Storage, 14, 2018.

[68] P. Helland. Fail-fast Is Failing... Fast! Changes in compute
environments are placing pressure on tried-and-true
distributed-systems solutions. Queue, 19(1):5–15, 2021.

[69] P. H. Hochschild, P. J. Turner, J. C. Mogul, R. K. Govindaraju,
P. Ranganathan, D. E. Culler, and A. Vahdat. Cores that don’t count.
In Proc. 18th Workshop on Hot Topics in Operating Systems (HotOS
2021), 2021.

[70] S. Ibanez, A. Mallery, S. Arslan, T. Jepsen, M. Shahbaz, C. Kim,
and N. McKeown. The nanopu: A nanosecond network stack for
datacenters. In 15th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 21), pages 239–256. USENIX
Association, July 2021.

[71] V. Jacobson and M. J. Karels. Congestion avoidance and control. In
SIGCOMM 1988, Stanford, CA, Aug. 1988.

[72] S. Jaiswal, G. Iannaccone, C. Diot, J. Kurose, and D. Towsley.
Inferring tcp connection characteristics through passive
measurements. In IEEE INFOCOM 2004, volume 3, pages
1582–1592 vol.3, 2004.

[73] James Lewis and Martin Fowler. Microservices: a definition of this
new architectural term. [Online, Retrieved Jun 12, 2022.]
https://martinfowler.com/articles/
microservices.html, 2014.

[74] H. Jiang and C. Dovrolis. Passive estimation of tcp round-trip times.
SIGCOMM Comput. Commun. Rev., 32:75–88, 2002.

[75] K. Kaffes, T. Chong, J. T. Humphries, A. Belay, D. Mazières, and
C. Kozyrakis. Shinjuku: Preemptive scheduling for {µsecond-scale}
tail latency. In 16th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 19), pages 345–360, 2019.

[76] J. Kaldor, J. Mace, M. Bejda, E. Gao, W. Kuropatwa, J. O’Neill,
K. W. Ong, B. Schaller, P. Shan, B. Viscomi, et al. Canopy: An
end-to-end performance tracing and analysis system. In Proceedings
of the 26th symposium on operating systems principles, pages
34–50, 2017.

[77] S. Kandula, D. Katabi, B. Davie, and A. Charny. Walking the
tightrope: Responsive yet stable traffic engineering. ACM
SIGCOMM Computer Communication Review, 2005.

[78] D. Katabi, M. Handley, and C. Rohrs. Congestion control for high
bandwidth-delay product networks. In Proceedings of the 2002
conference on Applications, technologies, architectures, and
protocols for computer communications, pages 89–102, 2002.

[79] C. Lee and J. Ousterhout. Granular computing. In Proceedings of
the Workshop on Hot Topics in Operating Systems, pages 149–154,
2019.

[80] J. Li, N. K. Sharma, D. R. K. Ports, and S. D. Gribble. Tales of the
tail: Hardware, os, and application-level sources of tail latency. In
Proceedings of the ACM Symposium on Cloud Computing, SOCC

https://zguide.zeromq.org/docs/chapter3/
https://www.datastax.com/blog/dynamic-snitching-cassandra-past-present-and-future
https://www.datastax.com/blog/dynamic-snitching-cassandra-past-present-and-future
https://vimeo.com/245778144/4d1d597c5e
https://cilium.io/blog/2020/06/22/cilium-18#kubeproxy-removal
https://cilium.io/blog/2020/06/22/cilium-18#kubeproxy-removal
https://guild42.ch/wp-content/uploads/2021/12/Guild42.ch-BPF-Borkmann.pdf
https://guild42.ch/wp-content/uploads/2021/12/Guild42.ch-BPF-Borkmann.pdf
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html


’14, page 1–14, New York, NY, USA, 2014. Association for
Computing Machinery.

[81] Y. Li, S. J. Park, and J. Ousterhout. MilliSort and MilliQuery:
Large-Scale Data-Intensive computing in milliseconds. In 18th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 21), pages 593–611. USENIX Association,
Apr. 2021.

[82] Z. Liu, S. Zhou, O. Rottenstreich, V. Braverman, and J. Rexford.
Memory-Efficient Performance Monitoring on Programmable
Switches with Lean Algorithms, pages 31–44.

[83] G. Lu and X. Li. On the correspondency between tcp
acknowledgment packet and data packet. In Proceedings of the 3rd
ACM SIGCOMM conference on Internet measurement (IMC), 2003.

[84] S. McClure, A. Ousterhout, S. Shenker, and S. Ratnasamy. Efficient
scheduling policies for Microsecond-Scale tasks. In 19th USENIX
Symposium on Networked Systems Design and Implementation
(NSDI 22), pages 1–18, Renton, WA, Apr. 2022. USENIX
Association.

[85] R. Miao, H. Zeng, C. Kim, J. Lee, and M. Yu. Silkroad: Making
stateful layer-4 load balancing fast and cheap using switching asics.
In Proceedings of the Conference of the ACM Special Interest Group
on Data Communication, pages 15–28, 2017.

[86] R. Mittal, V. T. Lam, N. Dukkipati, E. Blem, H. Wassel,
M. Ghobadi, A. Vahdat, Y. Wang, D. Wetherall, and D. Zats. Timely:
Rtt-based congestion control for the datacenter. ACM SIGCOMM
Computer Communication Review, 45(4):537–550, 2015.

[87] V. Olteanu, A. Agache, A. Voinescu, and C. Raiciu. Stateless
datacenter load-balancing with beamer. In Usenix Symposium on
Networked Systems Design and Implementation (NSDI), 2018.

[88] K. Ousterhout, R. Rasti, S. Ratnasamy, S. Shenker, and B.-G. Chun.
Making sense of performance in data analytics frameworks. In
Usenix Symposium on Networked Systems Design and
Implementation (NSDI), 2015.

[89] K. Ousterhout, P. Wendell, M. Zaharia, and I. Stoica. Sparrow:
Distributed, low latency scheduling. In Proceedings of the
Twenty-Fourth ACM Symposium on Operating Systems Principles,
SOSP ’13, page 69–84, New York, NY, USA, 2013. Association for
Computing Machinery.

[90] J. Pahdye and S. Floyd. On inferring tcp behavior. In ACM
SIGCOMM, 2001.

[91] A. Parker, D. Spoonhower, J. Mace, B. Sigelman, and R. Isaacs.
Distributed tracing in practice: Instrumenting, analyzing, and
debugging microservices. O’Reilly Media, 2020.

[92] P. Patel, D. Bansal, L. Yuan, A. Murthy, A. Greenberg, D. A. Maltz,
R. Kern, H. Kumar, M. Zikos, H. Wu, C. Kim, and N. Karri. Ananta:
Cloud scale load balancing. SIGCOMM Comput. Commun. Rev.,
43:207–218, 2013.

[93] J. Perry, A. Ousterhout, H. Balakrishnan, D. Shah, and H. Fugal.
Fastpass: A centralized" zero-queue" datacenter network. In
Proceedings of the 2014 ACM conference on SIGCOMM, pages
307–318, 2014.

[94] G. Prekas, M. Kogias, and E. Bugnion. Zygos: Achieving low tail
latency for microsecond-scale networked tasks. In Proceedings of
the 26th Symposium on Operating Systems Principles, SOSP ’17,
page 325–341, New York, NY, USA, 2017. Association for
Computing Machinery.

[95] H. Sadok, Z. Zhao, V. Choung, N. Atre, D. S. Berger, J. C. Hoe,
A. Panda, and J. Sherry. We need kernel interposition over the
network dataplane. In Proceedings of the Workshop on Hot Topics in
Operating Systems, pages 152–158, 2021.

[96] Satadal Sengupta and Hyojoon Kim and Jennifer Rexford.
Continuous In-Network Round-Trip Time Monitoring. In
SIGCOMM 2022, Aug. 2022.

[97] N. Serrino. Horizontal Pod Autoscaling with Custom Metrics in
Kubernetes. [Online, Retrieved Jun 12, 2022.] https:
//blog.px.dev/autoscaling-custom-k8s-metric/,
2021.

[98] N. V. Shirokov. XDP: 1.5 years in production. Evolution and lessons
learned. In Linux Plumbers Conference, 2018.

[99] B. H. Sigelman, L. A. Barroso, M. Burrows, P. Stephenson,
M. Plakal, D. Beaver, S. Jaspan, and C. Shanbhag. Dapper, a
large-scale distributed systems tracing infrastructure. 2010.

[100] S. Sinha, S. Kandula, and D. Katabi. Harnessing tcp’s burstiness
with flowlet switching. In Proc. 3rd ACM Workshop on Hot Topics
in Networks (Hotnets-III), 2004.

[101] L. Suresh, M. Canini, S. Schmid, and A. Feldmann. C3: Cutting tail
latency in cloud data stores via adaptive replica selection. In Usenix
Symposium on Networked Systems Design and Implementation
(NSDI), pages 513–527, 2015.

[102] M. Szymaniak, D. Presotto, G. Pierre, and M. van Steen. Practical
large-scale latency estimation. Computer Networks,
52(7):1343–1364, 2008.

[103] E. Vanini, R. Pan, M. Alizadeh, P. Taheri, and T. Edsall. Let it flow:
Resilient asymmetric load balancing with flowlet switching. In 14th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 17), pages 407–420, 2017.

[104] B. Veal, K. Li, and D. Lowenthal. New methods for passive
estimation of tcp round-trip times. In International workshop on
passive and active network measurement, pages 121–134. Springer,
2005.

[105] W. Wu, G. Wang, A. Akella, and A. Shaikh. Virtual network
diagnosis as a service. In Proceedings of the 4th annual Symposium
on Cloud Computing, pages 1–15, 2013.

[106] A. Yoo, Y. Wang, R. Sinha, S. Mu, and T. Xu. Fail-slow fault
tolerance needs programming support. In Proceedings of the
Workshop on Hot Topics in Operating Systems, HotOS ’21, page
228–235, New York, NY, USA, 2021. Association for Computing
Machinery.

[107] C. Zeng, L. Luo, T. Zhang, Z. Wang, L. Li, W. Han, N. Chen,
L. Wan, L. Liu, Z. Ding, X. Geng, T. Feng, F. Ning, K. Chen, and
C. Guo. Tiara: A scalable and efficient hardware acceleration
architecture for stateful layer-4 load balancing. In 19th USENIX
Symposium on Networked Systems Design and Implementation
(NSDI 22), pages 1345–1358, Renton, WA, Apr. 2022. USENIX
Association.

[108] Y. Zhang, L. Breslau, V. Paxson, and S. Shenker. On the
characteristics and origins of internet flow rates. In Proceedings of
the 2002 conference on Applications, technologies, architectures,
and protocols for computer communications, pages 309–322, 2002.

[109] H. Zhu, K. Kaffes, Z. Chen, Z. Liu, C. Kozyrakis, I. Stoica, and
X. Jin. RackSched: A Microsecond-Scale scheduler for Rack-Scale
computers. In 14th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 20), pages 1225–1240. USENIX
Association, Nov. 2020.

[110] D. Zhuo, K. Zhang, Y. Zhu, H. H. Liu, M. Rockett,
A. Krishnamurthy, and T. Anderson. Slim: OS kernel support for a
low-overhead container overlay network. In 16th USENIX
Symposium on Networked Systems Design and Implementation
(NSDI 19), pages 331–344, 2019.

https://blog.px.dev/autoscaling-custom-k8s-metric/
https://blog.px.dev/autoscaling-custom-k8s-metric/

	Introduction
	The Case for In-Band Feedback Control
	Granularity and Network Delays
	Performance Variability
	Avoiding App Modification
	Minimizing Traffic Footprint
	Goals for Next-Generation LBs

	Design
	Preliminary Evaluation
	Open Research Questions
	Conclusion
	References

