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Abstract
Latency is a key indicator of Internet service performance.

Continuously tracking the latency of client requests enables
service operators to quickly identify bottlenecks, perform
adaptive resource allocation or routing, and mitigate attacks.
Passively measuring the response latency at intermediate van-
tage points is attractive since it provides insight into the expe-
rience of real clients without requiring client instrumentation
or incurring probing overheads.

We argue that existing passive measurement techniques
have not caught up with recent trends in service deployments,
specifically, the increasing uptake of encrypted transports
(such as QUIC) and the use of asymmetric routing by design.
Existing methods are inapplicable, inaccurate, or inefficient.

This paper presents PIRATE, a passive approach to measure
response latencies when only the client-to-server traffic is
visible, even when transport headers are encrypted. PIRATE
estimates the time gap between causal pairs—two requests
such that the response to the first triggered the second—as a
proxy for the client-side response latency. Our experiments
with a realistic web application show that PIRATE can estimate
the response latencies measured at the client application layer
to within 1%. A PIRATE-enhanced layer-4 load balancer (with
DSR) cuts tail latencies by 37%.

1 Introduction

Latency is a key indicator of the performance and quality of in-
teractive Internet services. For developers of such services, it
is well known that smaller client-visible latencies drive better
user engagement [3, 4, 10, 14, 74]. Given its primacy, accu-
rate measurements of latency can feed important decisions in
designing and adapting networked systems. For example, op-
erators of some large content delivery services use the latency
between content servers and users to determine which servers
to redirect users to [76,103]. Autonomous Systems (ASes) on
the wide-area Internet may use high or variable latencies expe-
rienced by transiting connections to identify pathologies such

as persistent link congestion [47, 49, 100, 101] or interdomain
route hijack [7, 18, 38], and take corrective actions to fix rout-
ing configurations or provision capacity [80]. Within a data
center, server latency may be used to implement performance-
optimized replica selection in load balancers [39, 57] or re-
mote procedure call (RPC) clients [102, 111].

Continuous measurement of client-visible latency is cru-
cial since the latency may change over the lifetime of a con-
nection [36, 40, 50, 63]. For example, time-varying bursts
and packet losses in the network [43, 59], or server vari-
ability due to noisy neighbors, load, and resource schedul-
ing [40, 42, 56, 81], can significantly change the latency per-
ceived by the same client connection over time.

Consequently, the community has developed several tech-
niques and systems for continuous latency measurement.
Broadly, active approaches send explicit probes that ob-
serve latency, for example, by running ICMP pings between
servers [62]. Passive approaches observe latency at strategic
locations that can be controlled [103, 113, 115], possibly at
intermediate vantage points outside the client and the server.
Passive approaches do not require instrumentation or self-
reporting from clients which may be untrustworthy or not
easily changed [103]. If passive measurement is possible, it
can observe real and representative client connections [40],
avoiding the typical downsides of active approaches that incur
compute and network resources for probing [46, 75].

This Paper. We are interested in passively and continuously
measuring response latencies, which we define as the time
between when an application-layer request is sent and the last
byte of the response is delivered to the client application, i.e.
the per-object time to last byte. For RPCs within data centers,
response latency corresponds to the RPC completion time at
the application layer [68,79]. For web-based applications, the
response latencies of specific objects (e.g. those first painted
or largest on the user’s screen) are highly correlated with
several quality of experience metrics [21, 29, 30, 41]. As we
elaborate in §2.1, to be applicable to a broad range of scenar-
ios, we seek techniques to passively measure response latency
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while meeting the following additional requirements:
1. handle encrypted transport and application headers;
2. handle routing asymmetry;
3. generalize across transports and transport algorithms; and
4. support efficient deployment on software middleboxes.

At first glance, it may appear that the response latency is
closely related to the transport-layer round-trip time (RTT),
whose passive measurement is widely studied, e.g. [45, 50,
60, 66, 67, 95, 96, 107]. However, response latency is dis-
tinct from the transport-layer RTT, since the server may re-
turn a transport-layer acknowledgment well before the full
application-layer response. As far as we are aware, no ex-
isting RTT measurement technique can meet the additional
requirements above, and we know of no passive techniques
to directly measure response latency (§2.2).

Our Key Ideas. This paper uses three key ideas to meet our
measurement goals (§3).

Our first idea is to leverage the closed-loop nature of In-
ternet protocols and applications. When application requests
depend on the contents of prior responses—for example, a
web object embeds other objects—the reception of a prior
response generates the subsequent request. Flow-controlled
applications (transports) mandate that new requests (packets)
are only transmitted when prior responses (acknowledgments)
arrive. Such closed-loop packet transmission behavior enables
estimating the response latency by proxy: the vantage point
can measure the time delay between a request and a subse-
quent request that was triggered by the reception of the re-
sponse to the first request. We call the latter request a causally-
triggered request, and the pair of requests a causal pair. Many
latency-sensitive applications exhibit cross-request dependen-
cies (e.g. web [86], RPC [23,56,82,98]) and flow control (e.g.
key-value store [88], web [9, 15]).

It is not obvious how to identify causal pairs. At any given
time, many concurrent requests may be in flight. Connec-
tion persistence and stream multiplexing is standardized and
widely deployed in the HTTP protocols [1, 8, 19]. Two con-
secutive requests arriving at a vantage point from the same
connection do not necessarily form a causal pair.

Our second key idea is to leverage the time gaps between
packet arrivals to identify causal pairs. Once a client has
sent a few requests, its transmission of subsequent requests is
typically blocked by dependencies or flow control. Hence,
causally-triggered requests arrive after a time gap that is
longer than the inter-arrival times of the packets just prior.
We call this the prominent packet gap assumption. By choos-
ing an appropriate threshold on packet inter-arrival times, a
vantage point can classify any packet arriving with a time
gap exceeding this threshold as a causally-triggered request.
The time interval between two consecutive causally-triggered
requests provides one estimate of the response latency.

But what should the time threshold be set to? How can we
make this setting robust across deployments (e.g. wide area vs
data center), transports (e.g. TCP vs QUIC), and applications

(e.g. web vs key-value store)?
Our third key idea is the following: While a single promi-

nent packet gap is subject to (unknown) network, application,
and server conditions, observing packet inter-arrivals over a
period of time provides a more robust picture. In this paper,
we leverage the probability distribution of inter-arrival times
to identify prominent packet gaps, by designing a lightweight
construction to measure a coarse histogram of all packet inter-
arrival times within a connection. We also devise a procedure
to estimate the average response latency over the (config-
urable) time period when the distribution was measured.

We call our algorithm, a synthesis of the three key ideas
above, PIRATE. We show how to use measurements from
PIRATE in a feedback control loop (§4), by adapting a layer-4
load balancer to leverage real-time response latencies. This
design unilaterally changes the load balancer, leaving clients,
servers, application software, and the network unmodified.
The load balancer may use direct server return [90] to avoid
processing the responses.

Results. In §5, we evaluate PIRATE under a realistic web
workload derived from the Alexa top-100 web sites, with
a web server whose CPU availability varies follows a real
CPU utilization trace [108]. Across all monitored responses,
PIRATE achieves a median relative error of 0.63% relative
to the response latency measured at the client application.
Our results affirm the hypothesis that the proxy request-to-
request intervals estimated by PIRATE are sound approxima-
tions of client-application-visible response latencies. We have
localized the causes of errors in PIRATE to two main rea-
sons: client-side processing delays and staggered flights of
response packets transmitted by servers. Our results further
show that transport-layer RTT measurement cannot model the
application-layer response latency accurately, even when such
measurement can take advantage of bidirectional visibility
into traffic (PIRATE only sees client-to-server traffic).

We integrated PIRATE into Katran [11], an open-source
layer-4 load balancer based on Maglev hashing [53]. Latency-
aware Katran cuts the 99th percentile latency in our experi-
mental setup by 37% on average across loads, relative to (un-
modified) Katran. Latency-aware Katran also shows smaller
variability in tail latencies. The accuracy of PIRATE is robust
to packet loss and reordering in the network. We also show
that PIRATE accurately estimates response latencies over an
encrypted transport (mvfst QUIC [31]). PIRATE imposes an
average delay of 346 ns in the critical packet-processing
path when forwarding packets using XDP [65], a fast packet-
processing platform. For context, the Katran load balancer
takes on average 1114 ns to process each packet.

A shorter version of this paper appeared previously at a
workshop venue (citation elided for anonymity). In compar-
ison, this paper incorporates new techniques to make esti-
mation more robust, significantly expands evaluations of ac-
curacy and overhead under realistic settings, and designs a
feedback controller that operates on real-time measurements.
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2 Motivation and Background

Monitoring latency is a fundamental requirement for the de-
sign, maintenance, and optimization of interactive Internet
services. This paper studies the problem of measuring re-
sponse latency, which we define as the time between when an
application client sends out the request and when it receives
the last byte of the corresponding response. The discussions
below apply either when the client is a user device contact-
ing a web server or an RPC client in one tier of a distributed
multi-tiered application.

2.1 Our Goals

We seek a passive measurement approach to continuously
measure response latency at a vantage point which can lie
outside the client and the server, but along the path from the
client to the server. To make it more broadly applicable, we
also seek to meet the following more specific goals.
G1. Handle encrypted transport headers. Encryption
of application-layer payloads is ubiquitous on the web
and in compute clusters [20]. Modern transport protocols
and network-layer security go one level further, obscur-
ing transport-layer headers. Deployments of HTTP/3 over
QUIC [16,24] and network-layer encrypted tunnels [34], both
of which encrypt transport headers, are trending upward. We
desire a method that does not require visibility into transport
layer headers.
G2. Handle routing asymmetry. Nodes conducting pas-
sive measurement may be at locations which do not have
access to both directions of traffic flowing between the client
and the server. The prevalence of routing asymmetry is well
established in the wide-area Internet [91] and also in data
centers [114]. Further, many network deployments use asym-
metric routing by design. For example, layer-4 load balancers
employ direct server return [53, 90]—bypassing the load bal-
ancer for response packets—to avoid redundant packet pro-
cessing at the load balancer. BGP policies on the Internet
(e.g. stub networks) may choose different ingress and egress
border routers for a given connection [71, 104].
G3. Generalize across transports and transport algo-
rithms. The design of new TCP and QUIC algorithms (e.g.
congestion control, loss recovery) is an active and rapidly
evolving area. We seek techniques that avoid relying on spe-
cific behaviors of the transport protocol, generalize across
transports and transport algorithms, and sidestep the need for
new extensions to transport protocols.
G4. Capable of being run “online,” in particular on soft-
ware middleboxes. Measurement and monitoring devices are
frequently deployed in the form of virtual network functions
managed through a software-defined measurement infrastruc-
ture, e.g. [35, 89]. We aim for techniques that impose low
compute and memory overheads in software deployments, e.g.
middleboxes running high-speed packet processing.

2.2 Prior Work and Its Applicability
Measuring latency is a deeply studied problem in networking.
In particular, significant prior work exists on passive measure-
ment to observe round-trip times (RTTs) at the transport layer.
Below, we survey the literature and the suitability of the ideas
therein to attaining our measurement goals (§2.1).

RTT estimation approaches. The basic idea of passive RTT
estimation is relating data packets to their corresponding
transport-layer acknowledgments (ACKs) and measuring the
time difference between this pair of packets. Many prior
works on RTT estimation determine this relationship by con-
necting the sequence numbers or timestamps on data pack-
ets to the corresponding information echoed on ACK pack-
ets [50, 60, 66, 95, 96, 107]. Implementing this basic approach
requires visibility into transport headers in the clear (G1), and
seeing packets in both directions (G2).

We are aware of only a small number of techniques which
apply when the passive observor sees packet traffic in only
one direction. An early approach from Jiang and Dovrolis [67]
estimates RTT through the time interval between the SYN
and the ACK packet of the 3-way handshake, and also be-
tween small packet bursts during the early rounds of slow
start. These techniques are customized to the specific dynam-
ics of the TCP protocol (G3) and do not measure connections
beyond the beginning. Another set of prior works estimate
RTTs by computing frequency spectra over the time series of
packet arrivals [45, 107]. Such computations require signifi-
cant memory to hold packet timings (G4), and can be complex
to tune [50]. Most recently, researchers have proposed the
spin bit as a protocol extension (G3) to passively measure
RTTs [48]. It has been incorporated as an optional mechanism
in QUIC [12], but its deployment may be limited [77].

Response latency is dissimilar to the RTT. A high RTT im-
plies a high response latency, but a low RTT does not neces-
sarily imply a low response latency. In principle, the response
latency can significantly differ from the transport-layer RTT.
The server can transmit a transport-layer ACK to a client
prior to transmitting any response data. Further, responses,
typically larger than requests, may span multiple packets,
widening the gap between the transport-layer ACK and the
last byte of the response. When the client and server use a
protocol with pipelined requests (e.g. HTTP/1.1, HTTP/2, and
QUIC), multiple application requests may be transmitted in a
single packet from client to server. The transport-layer ACK
only corresponds to the first response.

Experimentally, we find that RTT and response latency
differ even when there is only one small application-layer
request in flight. We ran a web benchmark where the clients
maintain a single outstanding request at a time with the
server (our full experimental setup is described in §5.1). For
one of the client threads, Figure 1 shows the time series of
response latencies (marked req-to-res) against three tech-
niques to measure RTT: (i) using the kernel network stack
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Figure 1: TCP Round-Trip Time (RTT) estimation from the network
stack (tcp-probe), trace-based methods (tcpTrace), and syn-ack
estimation [67] do not match the client-visible response latency.

through tcp-probe [27]; (ii) by estimation from a packet trace
(tcptrace [96]; and (iii) syn-ack estimation [67]. Not only
is the response latency different from the RTT, but it is also
uncorrelated.

Other related work. Given the emerging prevalence of en-
crypted transports, some recent work aims to passively in-
fer quality of experience metrics specifically for web appli-
cations [64, 109]. These metrics compose the response la-
tencies of multiple objects, e.g. to estimate overall web ex-
perience [32], through machine learning and prediction. In
contrast, we are concerned with continuous measurement of
response latencies of individual objects throughout the life-
time of a connection. There is also significant prior work on
passively measuring the latency of specific segments of a net-
work, e.g. [43, 59, 75, 78] and algorithms to estimate latencies
over end-to-end network paths using previously measured de-
lays, e.g. [83,87]. Plenty of active approaches exist to measure
end-to-end network latency characteristics, e.g. [100,101,112].
This paper seeks continuous passive measurement techniques
for end-to-end response latency.

In summary, we believe that measuring response latencies
passively and continuously under modern transports and prac-
tical deployment constraints (§2.1) is as yet an unsolved prob-
lem. In the next section, we discuss a measurement approach
that addresses this problem.

3 PIRATE

This section introduces an algorithm to measure response la-
tencies passively and continuously for interactive applications
(§2.1). We assume that the vantage point of measurement lies
on the path from the client to the server.

3.1 Causal Pairs

Instead of measuring the time interval between a request and
its response, our first key idea is to measure a proxy time
interval—the time between a request and a packet transmitted
by the client due to the reception of the corresponding re-
sponse. We call the latter packet a causally-triggered request,
and the pair of packets a causal pair.

Causally-triggered requests exist due to several reasons: (1)
Cross-request dependencies: Many interactive applications
issue subsequent requests only when responses to previous
requests have been received and processed by the client appli-
cation. For example, web clients and RPC clients issue follow-
up requests to fetch objects based on previous responses. (2)
Flow control: Clients frequently cap the number of applica-
tion or transport data that are outstanding at the server. Web
browsers, memcached clients, and RPC client libraries are all
known to subject clients to such flow control [9,15,26]. (3) Ac-
knowledgments. A response may trigger an acknowledgment
at either the transport or the application layer.

In a simple setting, if a client application maintains exactly
one request in flight, with the next request only issued once
the response to the first one arrives, the two requests form a
causal pair, and measuring the time interval between the two
requests provides an estimate of the response latency. Causal
pairs are a generalization of syn-ack estimation [67].

There are two caveats to using causal pairs to estimate
response latency. First, a key source of error arises from the
additional time that the client application takes to process a
response and generate the follow-up request, i.e. the client
think time. In experiments on lightly-loaded clients, we have
measured client think times of a few microseconds to a few
tens of microseconds, and found its value to be independent
of the true response latency. Second, a measurement is only
available for one request per causal pair, not all the requests
on the connection. Our experimental results (§5) show that
the distribution of the samples of response latency we obtain
through causal pairs is representative of the true distribution
of the response latency across all requests.

A key challenge arises when we go to settings where mul-
tiple requests or packets may be in flight. Two consecutive
requests observed at a vantage point from the same connec-
tion need not form a causal pair. Accurate knowledge of
the client’s ongoing window size (at the transport or appli-
cation layer) may help identify packets that are not causally
related with each other, e.g. if they belong to the same window.
However, inferring the window size typically itself requires
assumptions on the dynamics of the transport protocol in
question [60, 66] (see G3 in §2.1).

3.2 Prominent Packet Gap Assumption

When a client has many requests and packets in flight, our
key insight to identify causal pairs is to leverage the timings
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of packet arrivals. The same reasons that produce causally-
triggered requests (cross-request dependencies, flow control,
acknowledgments) result in clients transmitting a burst of
data in one shot, and then pausing request transmission until
a response arrives. We exploit the observation that in many
practical scenarios, the pause is noticeably longer than packet
inter-arrival times in the burst, since the former is subject
to delays from the network and server processing, while the
latter is determined only by the ability of the client to transmit
requests. Hence, the first packet arriving after the pause must
be a causally-triggered request. Morever, the time interval
between two consecutive causally-triggered requests provides
an estimate of the response latency.

When a causal pair is separated by a burst-then-pause pat-
tern of packet arrivals, we say that the connection satisfies the
prominent packet gap assumption.

The prevalence of scenarios where the assumption holds
is well documented: TCP senders that use window-based
transmission send bursts of packets, termed flowlets [99,105],
separated by a pause, termed the flowlet gap. However, the
assumption does not hold universally. Packets arriving at the
vantage point may be uniformly paced either by the sender’s
transport, e.g. [44, 61] or a bottleneck link or policer [55, 70].
We conjecture that latency-sensitive applications transmitting
small amounts of bursty traffic may not be widely subject to
pacing, capacity bottlenecks, or policing.

Given a fixed time threshold δ, packets which arrive with
an inter-arrival time gap of more than δ are considered to be
a part of different bursts. We estimate the response latency by
the time between the first packets of successive bursts. This
algorithm is shown in Alg.1.

Algorithm 1 Track causally-triggered requests using a fixed
time threshold δ at the vantage point. The algorithm is exe-
cuted upon receiving each packet of a flow f .
Require: Fixed threshold on inter-packet gaps, δ

Require: Timestamp of the current packet’s arrival, now
Require: The last time a new batch arrived for flow f ,

f .time_last_batch
Require: The last time a packet arrived for flow f ,

f .time_last_pkt
Ensure: An estimate of flow f ’s reponse latency, T̂LB, if a

new sample is produced, else unde f
1: T̂LB← unde f
2: if now− f .time_last_pkt > δ then ▷ New batch: record

response latency
3: T̂LB← now− f .time_last_batch
4: f .time_last_batch← now
5: end if
6: f .time_last_pkt← now
7: return T̂LB

How should we choose the time threshold δ? This question
has a substantial impact to the accuracy of our response la-

tency estimate. Choosing too large a δ will miss legitimate
causal pairs, only identifying long idle periods in the con-
nection. Choosing too small a δ can make the estimation
vulnerable to noisy gaps between packets transmitted within
the “burst,” for example due to scheduling or processing de-
lays at the client’s application or transport layer.

Fundamentally, the duration of the pause depends on sev-
eral factors, such as the timing of writes from the client appli-
cation into the transport layer, the client transport’s schedul-
ing of packet transmission (i.e. flow and congestion con-
trol), scheduling at the network stack’s traffic control layer
or the NIC [94], cross traffic competing with the connec-
tion before packets arrive at the vantage point, the network
round-trip time, and server processing delays. The combina-
tion of these factors makes it unlikely that a fixed threshold
δ can work across different scenarios, or across time even
for a single connection in a specific network. Approaches
that select time thresholds for flowlet-based network load
balancing [37, 69, 99, 105] do so using the differences be-
tween expected path latencies, or through an empirically-
tuned value that achieves a desired balance among paths.
These approaches are unsuitable for a passive observor at-
tempting to measure latency in the first place.

3.3 Choosing a Packet Gap Threshold

Producing a response latency instantaneously after each
causal pair is subject to determining a hard-to-configure pause
time threshold δ (§3.2 and Alg.1). In contrast, we observe
that the timings of packet arrivals over time can provide mean-
ingful clues. This observation is inspired by prior work that
motives a longitudinal view of noisy data as a way to design
robust measurement and feedback control [58, 72, 93, 110].
We estimate the average response latency of each connection
over a configurable time epoch.

Specifically, given an empirical distribution of inter-packet
time gaps (IPGs) observed over the lifetime of a connection,
the significant modes of the probability distribution carry in-
formation about specific events occurring on that connection.
In Figure 2, we show an empirical distribution of IPGs in
a simple experimental scenario where a TCP client has a
roughly constant response latency whenever the response
arrives, but experiences occasional packet losses and idle
periods (where no data is either transmitted or received).
The IPG distribution includes a batch of packets within a
burst (smallest-valued modes); IPGs across bursts of causally-
dependent packets; loss timeouts (typically set larger than
response latencies); and idle periods (typically the largest
modes).

Through knowledge of standard parameters used for re-
transmission timeouts in transport stacks (publicly known for
several standard TCP and QUIC configurations [5, 17, 106]),
it is possible to eliminate the modes corresponding to re-
transmission timeouts and idle periods, leaving behind the
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Figure 2: Modes in the empirical distribution of inter-packet gaps
(IPGs). Modes carry useful information about phenomena of interest
occurring over the measurement epoch.

de-noised distribution of IPGs, which only includes gaps be-
tween request packets that are either (i) back-to-back packets
sent without dependencies among them, or (ii) triggered pack-
ets that are sent after a delay corresponding to the response
latency of a packet from the previous batch.

Computing a proportional mode sum. We devise a simple
estimation procedure that assumes that (i) the IPG distribu-
tion is representative of phenomena over the epoch where
the distribution is maintained; and (ii) the largest mode in
the de-noised IPG distribution is the IPG preceding the ar-
rival of a causally-triggered request. We call this IPG the
inter-batch gap (IBG). The average response delay can be
estimated by summing up the modes smaller than the IBG,
weighted by their frequency relative to the IBG. For exam-
ple, suppose the IPG distribution has three modes m1 = 100
µs, m2 = 150 µs, and m3 = 250 µs (after de-noising), with
corresponding probabilities Pr(m1) = 0.4,Pr(m2) = 0.2, and
Pr(m3) = 0.1. We assume that m3 (the largest-valued mode)
is the prominent packet gap (§3.2). Corresponding to each oc-
currence of m3, there are Pr(m1)/Pr(m3) = 4 occurrences of
m1 and Pr(m2)/Pr(m3) = 2 occurrences of m2. We estimate
the average response latency as 4∗m1 +2∗m2 +m3 = 950µs.
More generally, the proportional mode sum estimate can be
summarized by the expression ∑mi≤IBG

Pr(mi)
Pr(IBG) ∗mi.

Our use of IPG distributions is distinct from prior tech-
niques that probe the network using packet trains and use
IPG distributions to estimate bottleneck link bandwidth,
e.g. [51, 92]. The average response latency is the sum of
some number of packet gaps; identifying which packet gaps
to combine and in what proportion is the core challenge of
latency measurement, which prior work does not tackle.

While IPG distributions provide useful information, com-
puting distributions by maintaining the full list of IPGs (say,
on a software middlebox) for each active connection is pro-
hibitively memory-expensive. Maintaining histograms could
also get expensive: With a sufficiently fine-grained time res-
olution, say, 10 µs (RTT in some real data centers [28, 54]),

an epoch length of 100 ms and a 2-byte counter per bucket
of the histogram, one connection would require 20 KBytes
of memory. For a vantage point that sees 10K active connec-
tions, the memory consumption of the histogram touches 100
MBytes, larger than the L2 caches on many servers, implying
a substantial slowdown in packet processing performance.
Using a coarse time resolution will sacrifice accuracy when
response latencies are small, preventing the algorithm from
distinguishing modes finer than the resolution used.

3.4 Maintaining Efficient Histograms

To maintain an IPG distribution with memory efficiency for
each connection (§3.3), we design an algorithm that main-
tains a small number of buckets by dynamically varying the
resolution of each bucket according to the observed IPGs on
that connection. Dynamic bucket resolution provides some
advantages: (1) the histograms of different connections may
freely span different ranges of IPGs; (2) we can avoid the
overhead of bucket counters for IPG values that do not oc-
cur; and instead, (3) focus the available memory for bucket
counters on the IPGs that are indeed observed.

Our algorithm is shown in Alg.2. The histogram, M, in-
cludes a (configurable) maximum number of buckets (modes)
N. Initially, all bucket are uninitialized. Each bucket (after ini-
tialization) specifies the minimum, maximum, count, and sum
of all the IPGs observed within that bucket. For each observed
IPG g, the algorithm either (i) counts g into an existing bucket
whose (min, max) includes g, or (ii) if g is “close enough” to
an existing bucket, extends the bucket or merges two buckets
to produce a new, larger bucket that now counts g, or (iii) puts
g into its own new bucket if there is an available uninitial-
ized bucket, or (iv) discards g. The assessment of whether a g
is “close enough” to an existing bucket is to check whether
min− ε≤ IPG≤ max+ ε for a fixed parameter ε. As few as
N = 10 buckets (maximum number of modes) per connection
prove sufficient to capture all IPG distributions in our experi-
ments. At the end of each epoch, the proportional mode sum
(§3.3) is computed over the average mode values of histogram
M to emit an average response latency over the epoch.

Similar to ours, there exist storage-efficient algorithms in
the streaming setting, where a dynamic bucket size may be
used to maintain modes efficiently, e.g. [85]. We leave the
adaptation of such algorithms to our scenario and a quantita-
tive comparison to future work, since our experiments (§5)
show that our current algorithm is practical.

To further improve the accuracy of Alg.2, we use two
heuristics that eliminate IPG modes that we deem noisy. First,
we coalesce IPGs corresponding to pure transport-layer ac-
knowledgments into one IPG, by ignoring them from the
stream of IPGs observed for a connection. The intuition is that
pure ACKs do not represent the completion of an application-
layer response, but rather signal partial completion. Mechan-
ically, when transport headers are unencrypted, it is easy to
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identify pure ACK packets by inspecting the transport-layer
headers, for example, the TCP ACK flag and packet size.
When the transport layer is encrypted, this heuristic only ap-
plies if there is information that helps classify a packet as
a pure ACK, e.g. payload sizes. Our second heuristic is to
explicitly mark IPGs following a non-MTU packet as can-
didate modes to represent the IBG used in the proportional
mode sum computation. The intuition is that clients typically
send full MTU packets whenever packets can be transmitted
independently and back to back.

Algorithm 2 Maintaining a small number of modes N from
the empirical probability distribution of IPGs.
Require: New observation of an IPG g
Require: A representation of the empirical probability dis-

tribution, M, with N modes. For each 1≤ i≤ N, the ith

mode is a tuple (min,max,count,sum), denoting the min-
imum, maximum, count, and sum of all the IPGs observed
within the mode.

Ensure: M is updated with the additional IPG g
1: function UPDATEMODES(IPG g)
2: for m ∈M.get_modes() : do

▷ Modes traversed in ascending order
3: le f t = m.get_min()
4: right = m.get_max()
5: if le f t− ε≤ g≤ right + ε then

▷ IPG g lies within or proximal to mode m
6: ADDGAPTOMODE(g,m)
7: if le f t− ε≤ g≤ le f t then

▷ g is proximal from below
8: m.set_min(g)
9: CONSIDERMERGEMODES(m.get_prev(),m)

10: else if right ≤ g≤ right + ε then
▷ g is proximal from above

11: m.set_max(g)
12: CONSIDERMERGEMODES(m,m.get_next())
13: end if
14: return
15: end if
16: end for
17: if M has fewer than N initialized modes then

▷ Insert singleton mode containing g
18: ADDMODE(M,g)
19: else
20: discarded += 1
21: end if
22: end function

4 Use Case: DSR Layer-4 Load Balancer

To showcase the utility of real-time response latency mea-
surement, we show the design of a latency-optimizing layer-4
load balancer, which assigns incoming client connections to
backend servers based on real-time server performance. Such

load balancers implement direct server return (DSR), a mech-
anism to allow backend servers to send responses directly
to the client, bypassing the load balancer [90] on the path
from the server to the client. We do not claim any novelty
in our algorithm design; there is a significant body of algo-
rithmic work on performance-aware request load balancing,
e.g. [25, 25, 39, 57, 73, 84, 102, 111]. However, we do believe
that a DSR load balancer is a compelling use case for us-
ing continuous and passively-measured response latencies to
drive real-time feedback control under routing asymmetry and
encrypted transports. The goal of this section is to describe
one way in which such control can be designed.

Our design augments a Maglev-hashing-based load bal-
ancer [53]. We assume that the load balancer provides mecha-
nisms to assign weights to distribute the load across servers.
The load balancer should measure response latency for a num-
ber of connections mapped to each server using the algorithms
in §3, to produce a representative average latency for each
server. We then use these average server latencies to adapt the
weights assigned to the servers, using three key ideas.

First, we take away weights from servers which have av-
erage latencies larger than a high watermark, and place them
on servers which have average latencies smaller than a low
watermark. Our high (respectively, low) latency watermark is
defined as αhigh (respectively, αlow) times the latency of the
server with the smallest average latency. We use αhigh = 1.5
and αlow = 1.2. Moreover, the weight shifted from a high-
latency server is proportional to its latency.

Second, we restrict the low-latency servers eligible for plac-
ing additional weight by limiting ourselves to servers that have
sufficient freshness in their latency measurement. As prior
work has observed [111], measured latencies are a good met-
ric for the past performance of backend servers, but not their
future. Instead, a different metric such as the number of re-
quests in flight to a server is a leading indicator for the future
performance of that server. Consequently, some prior works
consider a combination of requests in flight and latency to
balance load [102, 111]. A DSR load balancer cannot directly
measure the number of requests in flight.

Instead, we measure the recency of the latency measure-
ment of servers, by defining the freshness of a server latency
measurement to be the ratio of the total number of requests
received in the last measurement interval to the number of
concurrent active connections at the end of that interval. This
metric captures the intuition that a server on the verge of
slowing down will have processed fewer requests per active
connection. Conversely, a fast server must have processed
more requests in the last measurement interval even if several
of those connections have arrived and completed. We only
consider a low-latency server eligible to take on additional
weight if its freshness is at least as high as any high-latency
server. Each such server receives an equal share of the total
weight that is shifted away from the high-latency servers, sub-
ject to a cap on the per-server increment in weight, to avoid
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the thundering herd problem [88].
The third key idea is to regress to the mean: if latencies

have not changed in the recent k measurement intervals, the
weights are slowly equalized across servers (we use k = 3).
Server and network performance can be highly variable. It is
faster to improve performance from an operating point where
no one server is assigned a disproportionately large weight.

5 Evaluation

In this section, we empirically evaluate PIRATE to answer the
following questions:
(§5.2) How accurate is PIRATE in measuring response laten-
cies under realistic applications and settings?
(§5.3) How does the accuracy of PIRATE compare to prior
measurement approaches (§2.2)?
(§5.4) Is PIRATE robust to factors which might affect packet
timings—packet loss, reordering, and request load?
(§5.5) What compute and memory overheads does PIRATE
impose on a software packet-processing middlebox?
(§5.6) Does PIRATE produce fresh-enough response latency
measurements to drive real-time feedback control systems?
(§5.7) How well does PIRATE generalize across transports
and applications?
(§5.8) Do the heuristics (§3.4) help improve accuracy?

5.1 Experimental Setup

Implementation of PIRATE. PIRATE runs as a kernel bypass
program developed in Linux eBPF, which attaches to the ex-
press data path (XDP [65]) hook, which resides in the network
device driver in the kernel. We use a standalone XDP for-
warder that implements the PIRATE algorithm for the accuracy
experiments. For our evaluation of the feedback controller, we
instrumented the Katran layer-4 load balancer [97], developed
and open sourced by Meta. PIRATE runs as a program that
calls Katran using a BPF tail call. Katran implements direct
server return. The measurement component of PIRATE was
developed in roughly 500 lines of C code.

Web benchmarking framework. We use the WebPolygraph
suite [2] as our HTTP client and server for benchmarking.
WebPolygraph allows detailed configuration of workload char-
acteristics such as (1) the number of benchmarking threads,
offered load (requests per second) initiated from each bench-
marking client thread, and the number of concurrent requests
on persistent HTTP connections over TCP; (2) the types of
objects (e.g.jpeg, etc.) and their prevalence (e.g. 20%) among
the requested objects; (3) properties of the dependency tree
of objects requested starting from the root URL requested by
the client (e.g. an object of type T includes Na objects of type
a, Nb objects of type b, and so on, where the values of the N(.)

can be drawn from a provided probability distribution; and
(4) the probability distributions of the sizes of each object

type. The WebPolygraph server is single-threaded. Under the
client workload we evaluate (see below), each client-to-server
connection saturates at a load of 4K requests/second under
100% allocation of a CPU core. Each WebPolygraph client
maintains at most 4 outstanding requests, compatible with
default limits on many browsers.

Client workload. We populate web page parameters (types,
sizes, object dependencies) into WebPolygraph by empirically
measuring a sample of 20 of the Alexa top-100 sites.

Server CPU performance. We derive a time series of CPU
allocations for our benchmark web server from a real CPU
utilization trace of Google’s Borg cluster jobs [13,108] (2019
trace). The trace provides histograms of CPU usage over a
5-minute period, where each sample collected in the original
data is over one second. We select the time series of the job
with the largest average CPU utilization in the trace, sample
from the histograms, and enforce the resulting CPU allocation
on the WebPolygraph server using Linux cgroups.

Topology. We set up our implementation of PIRATE and the
client/server workloads on CloudLab [52]. Unless specified
otherwise, we use a topology with three machines connected
in a triangle topology. The three machines consist of a client,
server, and a measurement vantage point. Each machine is a
c220g1 instance on Cloudlab, with two Intel E5-2630 8-core
CPUs, 128GB memory, and dual-port 10Gb NIC. Packets
are routed from the client to the server via the vantage point.
Server-to-client packets are routed asymmetrically on the
direct link between the server and the client. The PIRATE
measurement XDP program is attached to the client-facing
ingress interface on the vantage point.

Baselines. We instrumented the WebPolygraph client to com-
pute the time series of response latencies for each object on
each connection. This response latency is labeled req-to-res

on our graphs. However, clients can inflate the time between
causal pairs due to response processing on the client side.
Hence, we also show the request-to-triggered-request delay
measured at the client for reference, labeled req-to-req on
our graphs. In situations where we compare PIRATE against
RTT estimators, we have evaluated (1) tcptrace [96], an open-
source tool that analyzes pcap traces to produce latency esti-
mates, (2) tcp_probe [27], a tool that emits the sample RTT
estimates maintained by the transport layer on the Linux net-
work stack; and (3) syn-ack estimation [67, 103], which is
the time between the SYN and the ACK in the TCP 3-way
handshake. We compare the delays measured by the differ-
ent techniques on the same set of sequence numbers at the
transport layer, ensuring that our comparisons are “apples to
apples” on the same data. The one exception is the syn-ack
estimator, which only produces a single latency estimate for
the whole connection.

Definition of accuracy. When we compare a technique T
against a baseline (e.g. ground truth) technique B, we report
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Figure 3: (a) CDF of observed latencies across all the connections for the web workload in §5.1. (b) CDF of absolute errors across all responses
(relative to response latency). (c) CDF of relative errors across all responses (relative to response latency).

the absolute error latencyB− latencyT and the relative error
latencyB−latencyT

latencyB
.

5.2 Accuracy of PIRATE

We evaluate the accuracy of PIRATE under the settings de-
scribed in §5.1. In this experiment, we offer a load of 2K re-
quests/second in total to the server from all client threads and
connections. Figure 3 (a) shows the CDF of the observed laten-
cies at the client and the vantage point across all objects across
all connections. The three curves are closely aligned, showing
that PIRATE, which estimates the request-to-triggered-request
delay (labeled req-to-req), is able to match that and also the
ground truth response latency (labeled req-to-res). Figure
3 (b) shows the CDF of the absolute error of PIRATE and
the client-side request-to-request latency, against the ground
truth response latency, while Figure 3 (c) shows the CDF of
the relative errors. PIRATE’s median relative error across all
responses on all connections is less than 1%, but stretches
beyond ±15% at both tails.

We investigated where PIRATE makes errors (Figure 4).
We observe two kinds of errors. First, when the client has
a chance to transmit, but fails to transmit soon due to de-
lays from process scheduling and response processing, PI-
RATE sometimes interprets the inter-packet gap as a pause
(parsing-scheduling). Second, when a response is large or
incurs a significant processing time at the server, the response
packets may be spread over multiple network RTTs. Hence,
what is normally one burst of requests is now broken into
several “mini-flights” (say, just one request) which is released
after a single previous response is fully received. PIRATE
may mistake the pause between consecutive requests as a
pause between batches, while it is only a pause between two
adjacent requests which are not causally dependent on each
other (staggered-response). Figure 4 (a) shows the CDF of

Figure 4: (a) CDF of samples that differ from request-to-request
delay due to parsing/scheduling delays at client or processing delays
at server (b) CDF of number of sample within each connection that
differ from request-to-request delay due to parsing/scheduling delays
at client or processing delays at server

the fraction of erroneous samples of response latency from
PIRATE for each connection. Figure 4 (b) shows the CDF of
the average relative error of the erroneous samples emitted by
PIRATE relative to the req-to-req baseline.

5.3 Comparison Against RTT Measurement

To perform a faithful comparison of PIRATE against RTT
measurement approaches (§2.2), in this subsection, we re-
strict the web workload from §5.1 to hold only a single re-
quest in flight at a time on a single connection. A majority of
web objects (responses) are small enough to fit into a single
packet, which increases the likelihood that RTTs can faith-
fully model the response latency. We compare PIRATE against
the previously-used baselines (ground truth response latency,
as well as request-to-triggered-request time), as well as RTT
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Figure 5: (a) CDF of all measurements throughout the lifetime of all connections. (b) and (c): Time evolution of the latency of a single
(randomly chosen) connection during a small window of data transfer.

measurement baselines tcp-probe, tcptrace, and syn-ack es-
timation. Note that all techniques except PIRATE and syn-ack
have visibility into both directions of packet traffic.

Figure 5 (a) compares the CDF of the latencies measured by
these techniques over all objects and connections. TCP RTT
measures consistently underestimate the response latency,
since they are more closely aligned with the time to first byte
of the response, as opposed to the last byte. Figure 5 (b) and
(c) show latencies measured by these techniques over a small
interval of data transfer. Syn-ack delay is not representative
of response latency within a connection, as the latter varies
significantly over the connection lifetime.

5.4 Robustness

Figure 6: (a) CDF of latencies for a loss rate of 1% (b) CDF of
latencies for a packet reorder rate of 25%

Packet Loss and Reordering. We evaluate the robustness of
PIRATE to packet loss and reordering, which may affect packet
inter-arrival times at the vantage point due to the transport

layer’s adaptation. We induce loss and reordering of varying
rates over packets from the client towards the vantage point.
(Loss on the server-to-client path triggers retransmission from
the server to the client, which is not observed by the vantage
point, hence we do not evaluate this.) Figure 6 (a) shows the
CDF of latencies measured by PIRATE under a loss rate of
1%, while Figure 6 (b) shows the CDF of latencies under a
high packet reorder rate of 25%. PIRATE produces robust esti-
mates of response latency under both conditions. Estimation
accuracies were similar under other loss and reorder rates that
we evaluated.

Figure 7: (a) Average response latency across all connections under
different offered loads. (b) CDF of error relative to the response
latency (averaged per connection) at 12K requests/second.

Robustness to Offered Load. We evaluated the accuracy of
latency estimation as the load offered to the server varies. In
this experiment, we use the simplified web workload from
§5.3 to push the server load to higher request/second values.
Figure 7 (a) shows the average latency across all connections
at varying loads (requests/second). At a load of 12K request-
s/second, in Figure 7 (b), we show the CDF of relative error
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(averaged per connection) across the techniques. In both cases,
PIRATE agrees strongly with the response latency measured
at the client.

5.5 Overheads of PIRATE

Feature Memory Latency
Katran 458MB 1114ns

Katran + tail 458MB 1125ns
(δ = 11ns)

Katran + measure 470MB 1443ns
(δ = 12MB) (δ = 329ns)

Redirect 968 kB 871ns

Redirect + tail 968 kB 1022ns
(δ = 151ns)

Redirect + measure 11 MB 1396ns
(δ = 10MB) (δ = 525ns)

Table 1: PIRATE’s overheads, in relation to basic packet forwarding
and the Katran load balancer.

We compare the run times and memory of executing our
measurement algorithm (§3) within the XDP framework. To
put these numbers in context, we provide numbers for basic
packet redirection in XDP, and also the (unmodified) Katran
load balancer. To chain PIRATE with Katran, we used the
eBPF tail-call mechanism, which imposes a non-trivial com-
pute overhead, so we show the overhead of using tail calls
separately from using tail calls with our algorithm. Table 1
shows the compute time and memory numbers. Here, δ is
the variance we measured across 5 runs. The extra latency
incurred by PIRATE is in the range of 300-350 ns, while the
memory overhead per connection is 154 Bytes/connection.
(For 65K connections, this comes out to ∼10MByte, which
we believe is affordable on modern servers.) We believe that
these overheads are overall reasonable, and can be shrunk
further through careful optimization of the data structures and
the memory accesses per packet.

5.6 Feedback Control
We set up a larger experimental topology specifically to evalu-
ate our load balancer (§4). Here, we use seven machines—two
clients connecting to four servers, and a machine for the van-
tage point. Each machine is a Cloudlab xl170 instance, with
Intel E5-2640v4 10-core CPU, 64GB memory, and dual-port
25Gb NIC. A Dell S4048 switch interconnects the machines.
We configured the switch and all the machines to forward
packets from clients to servers via the vantage point, but
server-to-client packets directly via the switch, mimicking a
direct server return configuration [22]. The PIRATE algorithm
runs on the switch-facing ingress interface of the vantage
point.

Figure 8: Comparison of 99th percentile tail latency of an unmodified
Katran load balancer and our latency-aware one.

Figure 8 compares the 99th percentile tail response latency
of our enhanced latency-aware Katran (§4) and the unmodi-
fied Katran. At varying loads, the latency-aware Katran is able
to produce a sizable benefit in tail latency, and also leads to
more predictable tail latencies (shorter error bars). The latency
awareness provided by continuous and real-time response la-
tency measurement enables reducing the 99th percentile tail
response latency by 37% on average across loads.

5.7 Generalizing to Other Transports & Apps

Accuracy over QUIC connections. We set up an HTTP/3
QUIC client and server using Meta’s mvfst and proxygen
frameworks [31, 33]. As with our HTTP/TCP web client, we
instrumented our QUIC client to emit response latencies as
well as request-to-triggered-request delay for each response.
The client workload is simpler than a full web-like workload
(§5.1) in this experiment: we randomly choose response sizes
for objects from a uniform distribution between two specified
limits, and use a small static dependency tree of requests. We
tested two scenarios: (1) when the responses of all requests in
flight are small enough altogether to fit into a single packet;
and (2) when the responses are large and trigger QUIC ACKs
from the client. The response size in scenario 1 has a range
of 30–130 bytes, while the response size in scenario 2 has a
range of 1600–15100 bytes. In both cases, the HTTP header
size is around 187 bytes. There are 1–16 multiplexed streams
per connection.

PIRATE’s ACK-coalescing heuristic (§3.4) requires differ-
entiating pure ACK packets from those that contain data, a
feature not readily supported by inspecting QUIC protocol
headers. Hence, while our measurements for scenario (1) are
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exact (labels ending with -noack), we simulated the correct
identification of pure ACKs for scenario (2) (labels ending
with -ack). Figure 9 compares the accuracy of PIRATE against
the ground truth response latency and the request-to-triggered-
request latency, for a connection running for over a minute.
The result affirms the potential utility of PIRATE to measure
multiplexed encrypted transports. In the future, we believe
that either an extension to the protocol, or heuristics based
on payload sizes, may be applied to accurately identify pure
ACKs (scenario -ack) and practically realize these benefits.

Figure 9: CDF of measured response latencies for a QUIC connec-
tion, in scenarios that do or do not generate pure ACK frames (-ack
and -noack).

Accuracy for memcached clients. We set up a memcached
benchmarking client using memtier [6], a noSQL traffic gener-
ator. The memtier benchmark is run with a total of 10 threads,
with one client connection per thread. The proportion of get
and set requests is 1:1. The data size for responses is in the
range of 40–10000 bytes. The benchmark was run for 2 min-
utes. Figure 10 shows the CDF of the latency estimated by the
various baselines. PIRATE closely follows the ground truth
measured at the client. Similar to web clients and memtier,
we believe that PIRATE may be useful to measure response la-
tencies passively for other latency-sensitive applications that
exhibit cross-request dependencies or flow control.

5.8 Benefits of Heuristics
Using our setup described in §5.1, we evaluate the benefits
of the ACK-coalescing and MTU size heuristics (§3.4) in
improving the accuracy of PIRATE’s estimation. Figure 11
(a) compares the estimated response latencies when turning
off both heuristics, against PIRATE. In (b), the time series of

Figure 10: CDF of response latencies from memtier and PIRATE.

Figure 11: (a) PIRATE vs PIRATE without both heuristics. (b) PIRATE

vs the request-to-triggered request delay.

request-to-triggered-request delays is shown against PIRATE
for reference. The heuristics provide a noticeable improve-
ment to accuracy, especially in allowing PIRATE to track fast
fluctuations in latency.

6 Conclusion

This paper presented PIRATE, an algorithm that passively
and continuously measures response latencies under routing
asymmetry and under encrypted transport headers. PIRATE
leverages the idea of causal pairs, two requests the second of
which is triggered by the response to the first. In experimental
evaluation with realistic client workload and server perfor-
mance variations, PIRATE shows promising accuracy, and
measures latency variations fast enough to enable real-time
feedback control. Our results may have broader implications
to the design of reactive feedback control systems relying on
passive continuous measurement.
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